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1. Introcduction.

Since Black-Scholes (1973) and Merton (1973) introduced their now famous
option-pricing model, their methodology has been applied to the pricing of a
variety of other assets whose payoffs are contingent upon the value of some
other underlying or "fundamental" asset. By assuming that the fundamental
asset price process is of the Ita-type and that trading takes place
continucusly in time, the price of a contingent claim may often be derived by
using the hedging and no-arbitrage arguments of Black-Scholes and Merton.
Since the deduced pricing formulas are almost always functions of unknown
parameters of the fundamental asset price processes, any empirical application
of contingent-claims analysis must first consider the statistical estimation

1 In addition, since parameter-

of fundamental asset price parameters.
estimates are ultimately employed in the pricing formulas in place of the true
but unknown parameters, the sampling variation of parameter—estimates will of
course induce sampling variation in the estimated contingent-claims prices
about their true values. The practical value of contingent claims analysis
then depends critically on how parameter-estimation errors affect the accuracy
of the resulting contingent-claims price estimator. Furthermore, some measure
of the induced estimation error is required if the model is to be empirically
tested. Indeed, although a number of papers have studied the discrepancies
between estimated and observed prices for particular contingent claims, to
date there have been few direct statistical tests of contingent claims
models.2 In a spirit similar to Gibbons' (1982) examination of the capital-
asset pricing model, this paper proposes a new framework in which such tests

may be performed and in which the accuracy of contingent-claims price

estimates may be guantified statistically.



This new approach seems particularly fruitful for several reasons.,
Although it is introduced in the context of the Black-Scholes-Merton call-
option pricing model, later sections show that the suggested methodology may
be applied to any contingent claim for which the associated fundamental asset
price parameters are estimated. Few additional assumptions beyond those
common to all contingent claims models are required in order to apply the
proposed methods. In addition, the results derived in this paper are
computationally quite simple to implement. Furthermore, such a framework is
well-suited to the standard tools of statistical inference, estimation, and
forecasting. In fact, since the distribution of the contingent-claims
estimator is derived in closed form, all the usual hypothesis testing and
forecasting techniques may be applied to contingent claims analysis. This is
achieved through the use of large-sample or asymptotic statistical theory
which, essentially, consists of applying laws of large numbers and central
limit theorems to otherwise intractable estimation and inference problems. By
appealing te large-sample arguments, it is possible to derive explicitly the
limiting distribution of highly nonlinear functions (such as the Black-
scholes-Merton formula) of fundamental parameter estimates.

There are several reasons why large-sample properties may be of more use
to financial economists than existing small-sample results. First, due to the
usual type of intractable nonlinearities, exact small-sample properties are in
general quite difficult to derive.3 However, it will be shown that
corresponding large-sample properties are considerably more tractable. More
importantly, large-sample statistical theory is particularly relevant for
financial econometricians since financial data sets with over a thousand

observations are not uncommon.4



In order to demonstrate the practical value of this new methodology and
also to clarify the particular econometric issues at hand, Section 2 derives
the large-sample properties of the Black-Scholes-Merton (BSM) call-opticn
price estimator. The derived asymptotic statistics are then calculated using
data for options written on three specific stocks and some simple hypothesis
tests are performed. To explore the accuracy of the proposed estimators, some
gimulation evidence is presented in Section 3. In Sections 4 and 5 the

methodology is developed in its most general form, and Section 6 concludes.

2. Estimation and Inference for the BSM Call Option Pricing Model.

Let S(t) denote the price of a stock at time t and let
F(S, E, r, 1, 02) be the price of a corresponding call-option with exercise
price E and time-to-maturity 1, where r is the interest rate on riskless (in
terms of default) bonds and 02 is the variance rate of the underlying stock
price process S(t). Under the assumptions of the BSM model, F is determined

by the well-known formula:

Fo=Sp(d) - Ee‘r"q;(dz) (1a)
1 s 1 2
d, = — [1n (E] + (r+30 )1 (1b)
gt
d, = 4, - oft (1¢)

where ¢ is the standard normal cumulative distribution function. Although the
stock price, exercise price, time-to-maturity, and interest rate are
observable without error, the variance 02 of the underlying stock is

unknown. Recent studies have congidered the implied standard deviations
(variances) in call option prices under the assumption that investors price
options according to the BSM mode1.5 Indeed, it seems that these implicit

volatilities may be better forecasts of future wolatility than estimates
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derived from historical data. Because such an approach assumes that the BSM
model obtains, actual tests of the model itself may be difficult to

construct. In contrast to this approach, the following analysis takes as its
starting point the assumption that the stock price process S5(t) is the usual

lognormal diffusion process given by:
— = pdt + gdw (2)

The BSM model is not assumed to obtain, but instead forms the null hypothesis
which is to be tested. Since an estimate ;2 of 02 may be obtained by using
historical data, evaluating F at ;2 yields an estimate of the corresponding
option price. Although the resulting option estimator is clearly hot
unbiased, it is consistent if the variance estimator is consistent.
Consistency is a particularly desirable property since by definition a
consistent estimator approaches the true value with probability one as the
sample size grows. This is distingt from an unbiased estimator which,
although is correct on average, may fluctuate considerably about its true
value even in very large samples.6
Given a consistent estimator of the option price, a direct statistical
test of the BSM model may then be constructed by comparing this estimate with
the actual market price. Since the estimated price is subject to sampling
variation, a measure of its "spread" is needed in order to perform a
meaningful comparison. More formally, a test of whether or not the estimated
option price differs significantly from the actual market price requires the
calculation or the standard error about the estimated cption price and the
estimator's sampling distribution. In this section, the asymptotic
distribution of the option price estimator is derived and is used to compare

actual market prices with their BSM estimates.



Estimation of the stock price dynamics is considered first. Suppose that
n+1 equally spaced observations of S{t) are taken in the time interval
[0,T]. Letting h = T/n, Rosenfeld (1980) has shown that the maximum

likelihood (ML) estimator of 02 is given by:

n n
~2 1 1 2
o =— ¥ ( - — I x.] (3)
ML T oy Xy noLly I
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conditions, it is well-~known that the general ML estimator is consistent,
asymptotically normally distributed, and is efficient in the class of all

7 1n

consistent and uniformly asymptotically normal (CUAN) estimators.
addition, the ML estimator of any well-behaved nonlinear function of a given
parameter is simply the nonlinear function of the ML of that parameter. That
is, the ML estimator %ML of the option price F may be obtained by evaluating F
at ;iL' Since F is a true ML estimator, it is also consistent, asymptotically
normally distributed and minimum variance in the class of CUAN estimators,
Since the option estimator %ML depends on the estimator ;;L' it is not
surprising that the asymptotic distribution of %ML is related to the
asymptotic distribution of ;;L' It may easily be shown that ;;L has the

following asymptotic distribution:8

/m(Gh, - %) A no, 26h . (4)

Now consider the estimator %ML as a function of ;;L’ holding all other

~

arguments fixed, i.e., F = F(c;L). “he asymptotic distribution of %

ML, wr, ™2Y

then be derived by applying standard statistical limit thecrems to the Taylor

series expansion of F(giL) about the true parameter 52. More formally,

consider:
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Subtracting F(gz) from both sides, multiplying by /n, observing that Ry
converges in probability to O as n approaches infinity, and applying the Lemma

stated in Appendix B yields the desired result:

2

— - A 4.9F(g ) 2

/n (F - F)~ N0, 20 [——-——a g )Y . (6)
[+)

9

That is, for a sufficiently large number n of observations,” the sampling
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Given the BSM pricing formula (1), the gquantity Vp may be calculated

distribution of FML is normal with mean F and variance

explicitly as:

1 22 2
VF=-§HSUT¢ (d'l) (7

where ¢ is the standard ncrmal density function.

This expression is of interest for several reasons. In addition to
providing a measure of option price estimators' dispersion in large samples,
the analytic formula for V; may be used to examine how changes in the
underlying parameters affect the option estimates. In particular, empirical
studies of call option prices have noted several patterns in the data.
Macbeth and Merville (1979) observe that in-the-money call options are under-
priced by the BsSM formula and vice-versa for out-of-the money calls, and that
the degree of mispricing is aggravated by the spread between stock and
exercise price for most options. Black (1975), Merton (1976), and Gultekin,
Rogalski, and Tinic (1982) observe essentially the opposite biases. To see
whether such biases may be explained merely by sampling variation, consider
the derivatives of Vg with respect to the stock and exercise prices and the

time~to-maturity:
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The following inequalities are easily established:
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Although obtaining a similar pair of equivalent inequalities for 3¥— does not

seem possible, a useful sufficient condition for the monotonicity of the
derivative can be derived:
BVF
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In Table 1, values of k;, k,, and kg, have been tabulated for various times-
to-maturity measured in weeks given an (annualized) interest rate of 10 per

cent and an {annualized) standard deviation of 50 per cent.

TABLE 1 GOES HERE

Several observations may be made from the values in Table 1. Since the
interval [k2' k3] is fairly concentrated about 1.0, unless the option is very
nearly at the money an increase in the time-to-maturity will increase the

variance about the option price estimate. Por example, if the stock price is



$40 then options which are either in or out of the money by $5 or more are
more precisely estimated as the time-to-maturity declines. This may well
explain Macbeth and Merville's (1979) finding that biases of-in and out of the
money options decrease as the time to expiration decreases. This would also
support Gultekin, Rogalski and Tinic's (1982) observation that "In general,
the [BSM] formula gives much less accurate estimates for long-lived options.”

Another property of the option price estimator implied by the values in
Table 1 is that, loosely speaking, if an option is deep in the money (S/E > 1)
then ag the exercise price increases, so will the variance about the option
price estimate. If an option is deep out of the money (S/E < 1) then
decreasing the exercise price increases the variance of the estimated option
price. In other words, option price estimates exhibit more variation for
either deep in or out of the money options as the exercise price shifts closer
to the prevailing stock price. These statements may of course be made precise
by computing the values k,, kz, and k4 for particular options of interest.

The most direct application of the quantity Vg is in statistically
testing the BSM model. In particular, consider the null hypothesis that the
BSM model obtains. Letting F denote the observed market option price, this

null hypothesis may be stated as:

2 —
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This hypothesis may then be tested by computing the statistic:
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Since Vg depends upon the unknown parameter g, a corresponding "t-

n10 may be calculated by using a consistent estimator V_ = 2

statistic
p E VF(UML)



in place of Vg. HNote that the resulting statistic is still asymptotically
standard normal. The test is then performed by rejecting Hjy if z lies outside
an acceptable range of 0 and accepting otherwise, where the range of
acceptability is determined by the desired size of the test. If, for

example, ; fell outside the interval [-1.96, 1.96] then Hy may be rejected at
the 5% level. In addition, k%-confidence intervals about %ML may alsoc be

constructed in the usual manner:

~ bl fad ~
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option prices conditional upon projected future interest rates and stock

where mk = I¢_1( )1. Furthermore, confidence bands for the path of future
prices may be obtained in a similar way, assuming that the estimated
volatility is stationary over the forecast horizon. This may be of use to
investors interested in constructing "worst case" scenarios for portfolios
containing options.

Because the expression for Vp is analytically quite simple, computing
standard errors for option price estimates requires little caleculation beyond
the estimation of the stock price volatility. For illustrative purposes,
standard errors and the associated ; statistics have been computed in Tables
(2a), (2b), and (2c) for traded options on Litton, National Semiconductor, and
Tandy stocks for January 12, 1979. These three stocks were chosen from a
subset of five non-dividend paying stocks for which Rosenfeld (1980) estimated
drift and variance coefficients according to the dynamics given by (2). In
addition to their no-dividends property, Littcn, National Semiconductor, and
Tandy were chosen because they were trading in distinct cycles (March,
February, January respectively). This was done merely to provide a complete

cross-section of times-to-maturity. The estimates of the stocks' variances



were obtained from Rosenfeld!? (1980). They were estimated using 312 weekly
observations from the period January 1973 to December 1978. The interest rate
used was the (annualized) 26-week T-bill rate quoted on January 12, 1979 in

the Wall Street Journal (9.443%).

TABLES 2a-c GO HERE

Note that, holding the exercise price constant, the standard error of every
estimated option price in Tables 2a-c increases with an increased time-to-
maturity. Also, whether or not an option is in or out of the money does not
seem to be systematically related to whether it is underpriced or not. Of
course, previous empirical studies have used a much larger set of options than
the few considered here, so the lack of discernible patterns in Tables 2a-c is
not conclusive.

In terms of testing the null hypothesis H0 that the BSM model obtains,
the ;-statistics seem to indicate that the data are inconsistent with Hg. For
example, out of the eleven options written on Litton stock, only two estimates
had standard errors outside the 1%-critical region and only one estimate had
its standard error outside the 5%-critical region, However, caution must be
exercised in interpreting this since for each stock, the tests are certainly
not independent, Nevertheless, a simultaneous test of Hy for all Litton
options with a nine-week time-to-maturity results in rejection at the 5% level
of significance.12

It is important to note that the above test of H, is in fact a joint test
of the BSM option pricing model and of the associated stock-price dynamics.
Rejecting H in this case may not necessarily imply that the BSM model does not
obtain., However, because the BSM formula is so closely related to the

particular form of the stock-price dynamics it is difficult to imagine a
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situation in which (1) obtains but (2) does not. In fact, Rosenfeld (1980)
has tested the hypothesis that these three stocks follow the process (2) and
rejects in favor of a combined lognormal diffusion and jump process. But in
this situation, the model outlined in (1} does not obtain and must be modified
along the lines Merton (1976) develops. 1In addition to the possibility of
jumps, Rosenfeld {1980) and Marsh and Rosenfeld (1983) consider several other
alternatives which may support the results in Tables 2a-c. Although it is not
pursued in this paper, tests of such alternative hypotheses are readily
constructed in the framework proposed here.

In addition to the obvious interest investors have in estimating option
prices, the estimation of other quantities may also be of some importance. 1In
particular, the hedge ratio H plays a prominent role in determining the
overall riskiness of portfolios containing both stocks and options.13 Given
the BSM model (1), the hedge ratio is simply the derivative of the option

aF

price with respect to the stock price H =z YR Since H depends on the unknown

parameter 52, an estimate ﬁML of the true hedge ratio H may be obtained by
evaluating H at the ML estimator ;im of the variance. Furthermore, since ﬁ is
a true ML estimator of H it exhibits the usual properties of consistency,
asymptotic normality, and efficiency in the class of all CUAN estimators of

H. The asymptotic distribution of H may be readily calculated as outlined

above and, after some manipulations, is given by:

/Ay - 2o, hed@ad) . (13)

Although the asymptotic statistics for H are of less use for purposes of
model-specification testing, they may be of considerable value after a
particular form of the option pricing model has been validated by analysis on

the option prices F. In such an instance, confidence intervals about H may
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easily be constructed using (13), thereby providing portfolioc managers with
upper and lower bounds for the hedge ratio. Confidence bands for the future
path of hedge ratios conditional on projected future stock prices and interest
rates may, as in the case of option prices, also be readily obtained. This
framework allows investors to translate their forecasts of stock and bond
prices into forecasts of hedge ratiogs with the added advantage of providing a

simple measure of their forecasts' accuracy.

3. Simulation Evidence.

Although the empirical evidence presented in Section 3 is of interest in
its own right, that analysis also illustrates the practical relevance of
asymptotic statistical theory to the estimation of general contingent claims
prices. Sections 4 and 5 demonstrate formally that this methodology may in
fact be applied to any other contingent claim provided that its corresponding
underlying fundamental asset price process may be estimated., However, an
impeortant isue which determines the usefulness of large-sample results is the
number of observations required for those results to obtain. Unfortunately,
no general gquidelines exist so this issue must be resclved for each
application individually. ©Nevertheless the increasing sophistication of
statistical software coupled with the rapid decline of computer costs allow
researchers to determine what constitutes a large sample for a particular
estimator relatively easily.

In this section, a simple simulation study is conducted for the call-
option price estimators proposed in Section 2, Each Monte Carlo experiment
involves generating a time series for the stock price process with a given
drift and variance rate using a random number generator, and then computing
price estimates and corresponding asymptotic standard deviation estimates for

hypothetical options written on that stock.'® The estimated option price and
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asymptotic standard deviation may then be compared with their true values.
This procedure is repeated 1000 times in order to deduce the finite sampling
properties of the estimators. By varying the length of the stock price series
generated for the 1000 replications and noting its effect upon the estimators'
sampling behavior, it is possible to deduce the minimum number of observations
reguired to insure that the associated asymptotic properties do obtain. By
varying other parameters, it is also possible to study how the asymptotic
approximation to finite-sample properties may be related to the terms of an
option contract such as the time-to-maturity or the stock-price/exercise-price
spread. Throughout the simulations, the following parameter values were
assumed and held constant.

5 = $40

02 = 0.5200 (annual}

r = 0,1000 (annual)

The simulations were carried out at the weekly frequency for which r and 52
were adjusted appropriately. Tables 3 and 4 summarize the finite-sampling

properties of the option price and asymptotic variance estimators across the

1000 replications for various options and stock-price sample sizes.
TABLES 3a-c AND 4a-c GO HERE

Each table corresponds to experiments with hypothetical options of the same
time-to-maturity TAU, Tables 3a, 3b, and 3c report simulation results for
hypothetical options which are at the money and in and out of the money by $5
for maturities 1, 13, and 26 respectively. Tables 4a--c display simulation
results for options which are in and out of the money by $15 with respectively

1, 13, and 26 weeks to go. Experiments with options of intermediate exercise
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prices, times~to-maturity other than 1, 13, and 26, and assorted interest
rate/stock-price variance combinations were alsc conducted but since the
results depicted in Tables 3 and 4 are generally confirmed in these other
experiments, in the interest of brevity those results are not reported.15
Within each table, every row corresponds to a separate and independent

experiment. Each experiment involves simulating a time series of stock prices
of <length N, computing the estimators %ML’ %F' and test-statistic ; for a
particular hypothetical option, repeating this 1000 times, tabulating the
subsequent sampling distribution for the estimators and ;, and finally testing

the standard normality of z. Although the estimators F and VF may also be

ML
checked for normality, for purposes of hypothesis testing and constructing
confidence intervals the standard normality of the statistic ; is more
relevant., Of the many tests for departures from normality, only two are
considered here, The first is the usual Xz—test of goodness-of-fit which
measures the "distance" between the hypothesized distribution function
(normal) and the empirical distribution function. The second is the
studentized range test which is more sensitive to departures from normality in
the tails of the distribution. Since the primary use of ; is in the testing
of hypotheses, departures from normality in the tail areas are of more concern
than differences in the center of the distribution. For this reason, the
results of the studentized range test may be of more consequence than the
xz—test. Both tests are performed and the results are given in the last two
columns of each row.

Consider the entries in Table 3a. The first five rows comprise the
simulation evidence for a call option with exercise price 535 and one week to
maturity. The second five rows correspond to the experiment of a call option

with exercise price $40 alsc maturing in one week, and the last five rows are
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results for a call with exercise price $45 and one week to go. The first
column indicates the length of the stock-price series generated by the random
number generator. The second, third, and fourth columns display respectively
the true or population value of the option, the mean of the option estimator
across the 1000 replications, and the bias in percentage te;ms. The standard
deviation of the option estimate across the replications is given in
parentheses under the option estimate. The fifth, sixth, and seventh columns
present the true value, estimated value, and percentage bias of the asymptotic
variance Vp respectively. The eighth column provides the mean and standard
deviations of the ;-statistic over'all the replications. In the last three
columns, statistics which indicate how close ; is to a standard normal variate
are displayed. The first is the Xz—test with the p-value given in parentheses
below the test-statistic, The next column, labelled SKEW., displays the
skewness coefficient of ; across the replications and the last column,
entitled STD. RG., presents the studentized range of ;.

As Boyle and Ananthanarayanan {(1977) have shown, for an at-the-money
call-option few observations are required in order to trivialize the bias of
the option price estimator. The largest absolute price bias observed in
Tables 3a-c where options are either at the money or in or out of the money Ly
$5 is 0,64%, In addition, in Tables 3a-c the bias in estimating the
asymptotic variance is alsc gquite small, the largest being -1.95%. Por most
cases, both estimates were well within 1% of the true value. Note that,
although on average the bias for both estimators decreases as the length of
the stock-price series increases, the decrease is not monotoni:., This is to
be expected since each experiment is random and independent of the others and

is subject to the usual sampling variation.
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The biases for deep in or out of the money options, however, are quite
large when the time-to-maturity is one week, Table 4a displays price biases
of up to -31.41% and asymptotic variance biases of over -2200.0%. The
extraordinary bias in the variance estimator may be due in part to loss in
machine precision during the course of many calculations since the estimators'

order of magnitude is extremely small (10'12).

Nevertheless this suggests
that caution must be exercised in using these estimators for deep in or out of
the money options just about to expire. However, Tables 4b and 4c show that
as the time to maturity increases, the bias declines dramatically, the largest
price bias being 1.24% and the largest variance bias being -2,43%.

Consider now the asymptotic behavior of the statistic ;. Under the null
hypothesis that ; is standard normal, the Xz—test is performed for the 1000
replications of each experiment with 50 equiprobable categories yielding 49
degrees of freedom, From Tables 3 and 4, it seems that with a sample size of
100 weekly observations for stock-prices, the standard normality of ; may be
rejected at almost any level of significance, However, in most cases the null
hypothesis of normality may be accepted at levels of 5% or smaller with 300 or
more weekly observations of stock-price data. Nevertheless, it may be noted
that the means of % are negative for almost all experiments. For the purposes
of detecting skewness departures from normality, the skewness coefficient may
yield a more powerful test than the x2—test. Under the null hypothesis that
; is standard normal, the distribution of the sample skewness coefficient has
been tabulated16 and, for 1000 replications, the 90%-confidence interval is
[-0.127, 0.127] and the 98%-confidence interval is [-0.180, 0.180]. It is
clear that even in cases where the xz—test does not reject the null hypothesis
of standard normality, the skewness coefficient is often outside the 98%-

confidence interval. This indicates that the finite-sampling distribution of
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; is skewed (to the left). However, if the "tail-behavior" of ; is close to
that of the standard normal, then the hypothesis tests based on ; suggested in
Section 2 are in fact appropriate., To measure possible departures from
standard normality in the tails of the finite sample distribution of ;, the
studentized range for each experiment may be compared with its tabulated
distribution under the null hypothesis.17 For 1000 replications, the 90%-
confidence interval of the studentized range with 5% in each tail is given by
[5.79, 7.33] and the 95%-confidence interval with 2.5% in each tail is [5.68,
7.54]. For the hypothetical options in Tables 3a-c, only in two cases do the
computed studentized range fall outside the 90%-interval and only one of those
is outside the 98% range. This suggests that, although the finite sample
distribution of z may be skewed, its tail-probabilities match the standard
normal's fairly closely. For purpcses of testing the BSM model as specified
by (1), the results seem to support the use of the ;—statistic as described in
the previous section for options not too deep in or out of the money. Tables
4a-c show that for deep in the money options with 1 week to go, not even a
sample size of 700 is sufficient to produce the asymptotic results for ;; both
the studentized range and the x2 tests reject normality at practically any
level of significance. However, for deep out of the money options with 1 week
to go, sample sizes of 500 or more seem to be sufficient to render the tail
behavior of ; close to the standard normal's as measured by the studentized
range. In this case, the previous caveat concerning possible inaccuracies due
to loss in machine precision also applies so that caution must be applied in
drawing infterences from Table 4a. The results in Tables 4b and 4c however
show that once the time to maturity increases to 13 and 26 weeks, the tail
behavior of the ;—statistic matches that of the standard normal even for deep

in or out of the money options,
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From the simulaticn evidence provided above, it may be concluded that if
the call option pricing model (1) obtains, then for options which are not too
deep in or out of the money and for deep in or out of the money options which
are not just about to expire, using its asymptotic distribution for purposes

of testing and inference may well be justified.

4., The Estimation of Generalized Ito Processes,

Since almost all contingent c¢laims models assume that fundamental asset
prices follow Itg—processes, in order to demonstrate that the methodology
outlined in previous sections generalizes it is first necessary to consider
the estimation problem for this class of stochastic processes. For
expositional clarity we only consider the estimation problem for Itg processes
with single jump and diffusion components., The extension to multiple jump and
diffusion terms and vector Itg processes poses no conceptual difficulties but
is notationally more cumbersome. Let X{(t) be an Ito process with domain

t C R satisfying the following stochastic differential equation:
dx = £(X, t; g)dt + g(X, t; g)awWw + h(X, t; y)dN teg [0, o) (14)

where dW 1s the standardized Wiener process and dN is a Poisson counter (jump
magnitude = 1), independent of dW, with intensity ). There is clearly noc loss
of generality in assuming that the jump magnitude is unity since this is
merely a normalization which may be subsumed by the coefficient function g.
Suppose, however, the jump magnitude is stochastic. More generally, suppose
that certain "parameters" in £, g, and h are in fact random variables.

Without further information, there is of course little that can be done, If
however it is posited that these random parameters are distributed according
to a particular parametrizable probability law which is statistically

independent of dW and dN, then the estimation procedure described in this
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section may still be applied. For example, if it is assumed that the jump
magnitude is lognormally Aistributed with unknown parameters and is
independent of dW and dN, these parameters may be estimated along with the
other unknown parameters of £, g, and h as well, More will be said about this
later.

In addition to assuming those conditions which insure the existence and
unigueness of the solution to (1)18 we make the following additional

assumptions:

(A1) Coefficient functions £, g, and h are known up to parameter
vectors g, B, y, A respectively. The true but unknown parameters
aqr 30, Yo and 10 lie in the interior of the compact parameter
spaces A, B, T' and A respectively. Let g. = {(als BAr YA 10)' and
let 9 =Ax Bx T x A The functions £, g, and h are twice
continuously differentiable in (X, t) and three times continucusly

differentiable in 3.

(A2) n observations of X(t) are taken at times t_,
necessarily equally spaced apart, where 0 < t
X =z (X,, X2, ceey Xn)', where Xi = x(ti), i=

1
X(to) =

t2, “sny tn not
< L ] < t L]
n

1
1, seey Ila

X. is known.
0

We may now state the estimation problem as: Given the cobservations X and the
process dynamics {1), find the optimal estimator 5 of the true parameters BO'
This, however, is still not a well-posed problem since we have not vet
specified which class of estimators we are optimizing over nor have we stated
the criteria by which we may compare alternative estimators. By restricting
consideration to the class of consistent and uniformly asymptotically normal
{CUAN) estimators, it has been shown that the ML estimator is optimal in the
sense that it has the smallest variance of all other CUAN estimators. For
this reason, ML estimation is the preferred approach. The ML estimator is
obtained by considering the joint density function of the random sample X as a

function of the unknown parameters and then finding that value aML which
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maximizes the joint density in g. We now proceed to derive this joint density
function which, when cconsidered a function of the parameters g given the data
X, is called the joint-likelihood function,

Let P(X1, vees Xn) denote the joint-distribution function of the random
sample X, where the dependence of P on the unknown parameters g and on

t “oug tn have been suppressed for notational simplicity. If we assume

1 r
that: -
(A3) P is absolutely contingous with respect to Lebesgue measure defined
on the Borel sets of R for all g,
then the existence and uniqueness of the associated joint density
representation 5 of P is gquaranteed. The joint density p may always be

written as the following product of conditional densities:

p(X1, * e ey Xn) = 91(X1 )pz(xz X1 )p3(x3 X2, X1) as e pn(xn Xn_1, [ ) X1) . (15)

19

However, since X{(t) is a Markov process equation (2) reduces to:

If in addition, X{(t) is time-homogeneous then the functional form of the
transition density Px only depends upon the time index k in terms of the time

increment tk - t and not on tk itself. In this case, the notation P

k-1
should be interpreted as

ok G lX g v 5 ) = ot an |x ) wnere ay =ty . ()

If, for example, observations were then taken at egually spaced intervals of

length h, then the pk's are identical across time except for the starting
values X1+ Of course, one of the greatest advantages of estimating

continuous-time models is precisely that equally-spaced observations are not
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necessary., Unless stated otherwise, we do not assume equally-spaced
observations. For compactness of notation, we will write p(Xk' tk kk-1' tk—1)
as py -

Given the functions £, g, and h, the joint density function (X) of the
random sample X may be derived by solving the Fokker-Planck or forward
equation for the transition densities Py subject to any boundary conditions
which may apply. For the Itg process (1) this relation is derived in Appendix

A and is given by:

2
3 = -9 1,8 1q2. 7 - ~ 13 !
St [pk] = T uX [fpk] + /2aX2 lg pk] Aoyt Apy V% (R '] (18a)
such that
B(X, t; y) = X + h(X, t; y) , KE, 6 oy) = x (18b)
Py = pk(‘fi‘1, t) {(18¢c)
o (% B [X st ) =sX- X ). (184)

where §(X - xk) is the Dirac-delta function centered at Xy _,. Although the
functional partial differential equation in (5} characterizes the transition
densities hence the conditional likelihcood functions, obtaining a closed form
solution for Py is generally quite difficult. By restricting the functional
forms of £, g, and h however, it is possible to derive the transition
densities explicitly., For example, if h = 0 (pure diffusion) and f and g
satisfy the following reducibility condition:

2 [q] 2

3 at 3 f 1, 3
g -2 s e agl} =0 (19)
X [ { g2 aX g sz }]

it may be shown?® that there exists a transformed process Z(t} of X(t) for

which the coefficient functions are independent of Z{t). That is, for some
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suitable change of variables T[X(t)] =z Z{t), an application of Ito's lemma
will yield:

dZ = p(t; g)dt + g(t; §)dawW (20)

In this case the transition density function for the transformed data is

readily derived as:

0y % t) = [2n ] - (21)

For example, the transition density of the lognormal diffusion process (2) may

be obtained by letting Z(t) = 1n S(t) and computing dZ as:
- 1, 2
daz = (u - /20' Jdt + gdw . (22}

Since the coefficient functions of Z{(t) only depend upon time and the unknown

parameters, by equation (21) the transition density of an observation is just:

2 2
(2-2_, - - Yoot -t )

=1
P (2r £} = [2ﬂ02(t -t )] /2exp[— ] (23)

202(t - t_,)

Note that in the expression for the transformed process Z{t} {(equation (20)),

both coefficient functions are dependent upon the parameter vector g.

Although for specific examples, such as the lognormal, the coefficient

functions may be shown to be independent of particular subsets of g, at this

level of generality the dependence of both p and 4@ on g cannct be ruled out.
Given the transition densities Pi’ the joint-likelihood and log-

likelihood functions of the random sample X are given by:
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n
Ligs X) = 1 p(X, t]x .. t i 8) (24a)
k=1

=

n
Glo; X)= © Imp(X, t]x ., & ie)z1 2 ([ ;8. (24b)
1 k=1

~
il

"Under assumptions (A) and mild regularity conditions, the ML estimator eMEL
of 90 exists, is consistent, and is asymptotically efficient in the class of

all CUAN estimators. That is,

plim §,, = 8, (25a)
N0
/m (8, - 8,) = N0, 1 (p,)) (25b)

where the asymptotic covariance matrix I-l(eo) is the inverse of the

information matrix I(eo):

222X [x 7 8
3608

] n
I(eo) = =1lim Py E

k

] . (26)
]

The previously menticned problem of random parameters may hnow be
considered explicitly. If such random parameters are distributed
independently of dW and dN according to a particular parametric family of
distributions, then the following approach may be taken. First, a conditiocnal
joint-likelihood function for the sample X may be derived according to the
procedure outlined above, conditioning upon fixed values of the random
parameters. The unconditional likelihood function is then cbtained by
multiplying the conditional likelihood function by the particular marginal
density or distribution functions of the random parameters. The maximization
of the joint-likelihood function may then be performed for all parameters

Yielding ML estimates of the parameters determining the probability law of the
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random parameters in addition to ML estimates of the non-stochastic
parameters, Note that, as a special case, such a specification may be
employed to incorporate non-stationary parameters such as a time-varying drift
and variance rates for the lognormal diffusion process.

Por illustrative purposes, the likelihood functions of several particular
processes are presented in examples 1, 2, and 3,
Example 1. (Ornstein-Uhlenbeck process)

Let X(t) solve

dX = - Xdt + g dwW > 0 (27)

%0
It may then be shown that the conditional-likelihood function is given by

2 “agdty o
"o e'ZGOAtk)]—'Ub _ ag (X=X @ )

'%&%)

] {28)
53(1 -e

Example 2, (Diffusion with absorbing barrier)21

Let X(t) be a Wiener process with drift, i.e.,

dX = q,dt + g,dW (29)
such that X4 > 0 and suppose that X(t) = 0 is an absorbing state., In
addition, let X1 > 0, o o ey Xn_1 > 0, Xn = 0 so that absorption is realized
in this sample some time between t, , and t . Then the likelihood-function
for this sample would be the product of the conditional densities for

observations X, to X,_; where:

2
(X, = X _ = aghty)

2.
2Boh "y

2 =1
p (X tklxk_1, t _)=[2n8,8t% ] /bexp[— ]: k=1, «c., n=1 (30)

multiplied by the distribution function of the first-passage time for
ocbservation X Following Cox and Miller's (1973} derivation for the firgt-

passage time distribution of a process with an absorbing barrier at X = a > 0,
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we calculate the distribution for the barrier at X = 0 to be:

=X -a~AL Za X -X +a AL
n-1 0" ™n 0" n-1 n-1 -0 ™n
netr o)) = @[—————::::———] + exp[- 3 ]¢[ — ] {31)
BoYAT, Bo BoYA%,

P(Absorption in (t

where ¢ is the standard normal distribution function. Note that although X(t)
may have been absorbed at any time between t _; and t_, knowing that X(t) has
been absorbed by time t_  is sufficient for computing ML estimates of the
unknown parameters,

Example 3. (Combined lognormal diffusion and jump process)

Let X(t) be the following Ito process:
dX = g Xdt + g XdW + y XdN {32)

By using the log-transformation Y = 1ln X and Ito's Lemma, the behavicor of Y

may be described by:
1
ay = (“0 -3 Bo)dt + Bodw + 1n(1 + YO)dN (33)

It may then be shown that the conditional-likelihood function is given by

. } i 2
a3 Y-Y _-In(t+y ) - (q - = BS)A
ej!A ¢( X k-1 0 0 2 %0 tk) (34)
Bo’Aty

o b ly 5 = L

In practice, approximate ML estimates are numerically computed using only
a finite number of terms from the above infinite series. Clearly such an
approximation may be made as accurate as desired by including a suitably large
number of terms in the estimation.,

This example highlights an unlikely but potential problem with the ML
estimation procedure. Since the practical value of maximum likelihood

estimation depends critically on the smoothness of the likelihood function,
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clearly non-differentiable transition densities for X(t) must be ruled out.
Although it may seem that the inclusion of a jump component might introduce
some discontinuities in the corresponding likelihood function, it may be shown
that as long as a diffusion component is present the likelihood function will
be smooth. Heuristically, this is due to the fact that the convolution of two
distributions is as smooth as the "smoother" of the two. If the domain of
possible solutions to (19) is expanded to include all generalized functions
{such as the delta-function), it may be readily shown that the conditional
likelihood function of this example is simply the convolution of the normal
and Poisson density functions.?2 Since the normal density function is
infinitely differentiable, so is its convolution with the Poisson. Suppose,
however, that the coefficient function g of the general process (14) is
identically zero at the true parameter Bo* Although the solution to (19)

still exists in the space of generalized functions,23

it will not in general
be differentiable hence the numerical implementation of the maximum likelihcod
procedure as discussed in this section clearly breaks down. In practice this
issue will almost never arise since the probability that g = 0 is essentially
zero. It is, however, of some importance if theoretical considerations imply

that g is zero and one wishes to test this, since in such a situation under

the null hypothesis the ML estimator as developed above is not defined.

5. The Asymptotic Distribution of General Contingent Claims Estimators.

Let F be the price of an arbitrary asset which is contingent upon the
fundamental asset X(t). In particular, suppose F may be determined by the

following known asset-pricing formula:
F = F(X, t, n; 90) ' F continuously differentiable in g (35)
where pn is a vector of cbhservables (e.g., interest rates, time to maturity,
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etc.) and eo is the unknown true parameter vector associated with the
fundamental asset price process X(t).
Given assumptions (A), the well-known "principle of invariance" states

that the ML estimator of the contingent claims price F is simply

-~ ~

where eML maximizes {(24). Since FML is a true ML estimator of F, it is also

consistent and asymptotically efficient in the class of all CUAN estimators of

F. In addition, the asymptotic distribution of the estimator %ML’may be
easily derived and, as shown in Appendix B, is given by:
/n (P, - F) 2 N, v.) (37a)
ML "0
aF{ay)’ 8F(g,)
0 -1 0
vV, = ———— (g.) —— (37b)
0= 30 %’ T30

Using (37), the usual forms of statistical inference may then be applied
to the estimated contingent claims price. 1In particular, the model-
gspecification test, confidence intervals, projected confidence bands, and
other forms of statistical inference which were suggested in Section 2 for the
BSM call option pricing model may also be applied to any other type of

contingent claims model in a similar fashion.

6. Conclusion

In this paper we hope to have provided a general methodology for the
estimation and testing of general contingent claims asset-pricing models by
appealing to asymptotic statistical theory. Given the large-sample
distribution of any contingent claims price estimator, the financial economist

may bring to bear a considerable collection of statistical tools upon a
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variety of problems in model-specification testing and forecasting. Since
what constitutes a "large sample" depends upon the particular estimator of
interest, Monte Carlo studies must be performed on a case by case basis in
order to determine the practical relevance of the proposed methods. The
simulation results reported in Section 3 for the Black-Scholes and Merton call
option pricing model suggest that for most call options, a large sample
consists of between 300 and 500 weekly observations. Moreover, the costs of
performing these simulation studies are guite small, certainly relative to
their payoff but also in absclute magnitude. As an example, the costs of
performing the simulations in Tables 3 and 4 did not exceed $25.00.

In addition to cost-effectiveness, another advantage of such large-~sample
raesults is tractability. The numerical estimation of the fundamental asset's
parameters is a straightforward application of now standard maximum likelihood
sof tware packages such as BHHH, GQOPT, or TSP. In addition, part of the
standard output of such packages is a consistent estimate of the inverse of
the information matrix 1'1. Given this estimate, the asymptotic distribution
of any corresponding contingent claim may then be derived by computing the
derivative of its pricing formula with respect to the unknown parameters, For
those contingent claims with tractable pricing formulas, expressions for their
asymptotic distributions will also be tractable. The applicability of the
proposed methods thus extends to practically all contingent claims models
which are of theoretical interest since those are often ones for which pricing
formulas may be determined explicitly. Although this approach seems quite
promising, whether or not the application of these results to other contingent
claims meodels will yield new insights can only be determined by further

empirical investigations.
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Appendix A - Derivation of the Forward Equation
Let X{t) solve the following stochastic differential equation:
(A1) dx = £{X, t; q)dt + g(X, t; g)aWw + h(X, t; y)dN

where dW is the standard Brownian motion and AN is a Poisson counter with

intensity ) and independent of dW. Let y(X) be an arbitrary ¢ function. By

Ita's Lemma24 we have:
2
{A2) dy = [fo + D§¢xxg Jat + Py 9dW + [$(X + h) - p(x)]aw .
where
2

bE o by TS

X = 3X XX ax2
Define Dp,x to be the Dynkin operator at time ty. i.e., DP,k = g; Etk[-]-
Applying it to y yields:

- 1 2 -

{A3) DP,k[¢] = Etk[¢xf + V2yyyd 1+ xEtk[¢(X +h) - y(x}] .

Given assumption (A3), we may express DP k[q,] as the following integral:
L

(nda) DP'k[lpl =§£ {q,xf + 1/2¢xxg2 + A[p(x + h) - y(X) ]}p, (X, t)dX

2

2

(Adb) = [ [~ g_x (£p, ) + Yoy &5 (3%, ) - pA}aX + A [ y(X + h)p ax .
Q ax

2

Let Yz A(X, t; y) = X + h(X, t; y) be an onto map of g to Q for all (t, ¥)

and suppose that %E (B) + 1{ # 0 for all (t, y) and X ¢ Q. Then the Inverse

-1

Function Theorem guarantees the existence of R such that X = H_1(Y, t: y)e.

Using the change of variables formula, we have:
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(a5a) [ y(X + hlp, (X, t)aX = | ¢(Y)pk[ﬁ'1(y, t; Y))I'%? [H'1fy, t; Y))'dY
Q Q

(a5b) = [ e (ET 6 )] B (k6 ) fax
Q
We then conclude that

2
— a 1 a 2 ~ a —1
{A6) DP’k[q;] —sfz {-—3-} (fpk) + /2—8;'2“ (g pk) - lpk’ -5-)-(- R '}w(X) dx .

Assuming that w(x)pk(x, t) is continuous on § x [0, =), DP k[¢] may be

calculated alternatively as

IQ)

d
(A7) Dy 9] = 3% Etk[w] = é p(xX) 3 [py (X, £)]ax .

o

Equating (A7) and (A6) and noting that the equality obtains for arbitrary

smooth functions ¥ allow us to conclude that:.

2
3 - .3 1, 8 2 _ ~ a3 -1
(38)  S% [py] = - 25 [fpy ] + /2—ax2 (5% = doy * Mo | 5% B 1] .
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Appendix B - The Asymptotic Distritution of
the General Contingent Claim Estimator
The derivation of the general contingent claim's asymptotic distribution
involves the application of basic results in large-sample statistical theory
but for expositional purposes we present the derivation instead of simply
quoting the results. For this purpose, we require the use of the following

well~known lemma:

Lemma: If Y converges in distribution to Y and A, and B, converge in
probability to a and b respectively, then A, + B,Y, converges in

digtribution to a + bY,
Proof: See Rao (1973).

Since BML is a maximum-likelihood estimator, JE'(BML - 30) converges in

distribution to a random variable which is N[O, 1-1(30)] where I(eo) is given
in equation (26), Consider the ML estimator FML = F(aML) of an arbitrary
contingent claims price F(eo) where the dependence of F on (X, t, n) has been

suppressed for notational compactness, Taking a Taylor expansion of F about

the true parameter vector yields the following relation:

(B1) Floyy,) = Flog) + (Byy - 84)" [ o5 (Our ~ 89)]
2F _
where the Hessian 5%567 is evaluated at g = 80 + 1o for some ¢ ¢ (0, 1)} and

E-g @ such that § lies in an open set containing 90. Multiplying both sides

of (B1) by /n and rearranging yields:

3F(8,)

(82) /7 (Floyy) = Flog)) = VA (8, = 00)' [ + R ] -
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Observing that the Hessian term R, converges in probability to zero as eML
converges in probability to 90 and applying the above lemma then produces the

desired result:

3F' (g4) aF(9,)
- 2 A 0 -1 0
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Footnotes

I would like to thank Bulent Gultekin, Don Keinm, Craig MacKinlay, Whitney
Newey, Nancy Ng, George Pennacchi, Krishna Ramaswamy, Jay Ritter, Mark Watson
and the participants of the Finance Seminar at the University of Pennsylvania
for many helpful comments. The Alfred P. Sloan Foundation provided much
appreciated financial support. Aany remaining errors are of course my own.

1"Estimation“ here is in the classical statistiecal sense, distinct from
estimation in the filtering sense (see Davis and Marcus {(1980)) in which
properties of an unobserved process X(t} are deduced from observing a related
process ¥{t). Of course, observing X(t) without noise may be considered a
special case of the general filtering problem.

2Papers by Black and Scholes (1972), Merton (1973), Black (1975}, Macbeth
and Merville (1979), and Gultekin, Rogalski, and Tinic (1982) have noted
systematic differences between observed market prices of call options and
prices obtained from the Black-Scholes formula but did not formally test
whether such departures were statistically significant., Gultekin et. al. does
consider how such biases change with the time-to-maturity although no formal
explanation of their findings was proposed. However, several studies have
considered testing the efficiency of options markets. In particular, Black
and Scheles (1972}, Galai (1977), and Finnerty (1978} have explored the
possibility of excess returns resulting from observed options prices deviating
from the Black-Scholes prices., Chiras and Manaster {(1978) study possible
excess returns generated by using implied standard deviations in the pricing
formula. Whaley (1982) also uses implied standard deviations in examining
various pricing formulas for calls on stocks with known dividends. Violations
of certain boundary conditions by observed market prices have also been

investigated by Galai (1978) and Bhattacharya (1983). Although many of these
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empirical findings are quite striking, without some guidelines as to the
statistical significance of observed deviations, hypothesis tests cannot
formally be constructed. Even in Whaley's (t982) six regression tests of
option valuation, since the linear regression equations are not determined by
theoretical considerations there is no guarantee that the subsequent test
statistics have a particular sampling distribution. In this paper, a new
methodology based on asymptotic statistical theory is propesed in which the
significance of such deviations may be guantified. 1In addition, the
methodelogy may be applied to contingent claims other than options for which
the standard tests of boundary conditions or market efficiency may be more
cumbersome (as in the case of life-insurance or investment opportunities).

35ee Boyle and Ananthanarayanan (1977) for the exact small-sample
distribution of the call option price estimator given the usual small-sample
Xz-distribution for the variance estimator.

4For example, the Chicago Board of Trade Foundation provides a data base
of daily open, high, low, and closing prices for twenty-six commodity futures
for all delivery months or from the contracts' starting date for the years
1959-1969. Standard and Poor's COMPUSTAT Industrial Annual data base contains
balance sheet and income statement data for approximately 2700 firms for the
past ten years. The Center for Research in Security Prices' monthly stock
returns file includes 2990 common stocks listed on the New York Stock Exchange
and covers the period from December 1925 to December 1982.

5See for example Latane and Rendleman {1976}, Chiras and Manaster (1978),
Schmalensee and Trippi {(1978), Manaster and Rendleman (1982), Whaley {1982),
and Bhattacharya (1983).

8

As an extreme example, consider a coin which has an unknown probability

p of coming up "Heads" when tossed, where p is known to be between Lﬁ and
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3/4. Toss the coin once and consider the estimator p which equals 1 if the

coin comes up "Heads" and O if it comes up "Tails." Although this estimator

is incorrect with probability one, it is in fact unbiased.

Tror perhaps the weakest set of reqularity conditions which insure

consistency and asymptotic efficiency of maximum-likelihood estimators, see

Huber {1967).

As an example of a {stronger) set of sufficient conditions,

agsume the following (see Jorgenson (1982} and Section 4 of this paper):

(1) For all X, 8, # 8, implies L(e1; X) # L(ez; X)

{2) In some neighborhood of the true parameter value Bgr wWe have:

{a)

(b)

(c)

(d)

(e)

{3) For any vector q and any scalar § > 0, E[(q'
finite, for all k.

8

For all X and k, the first three derivataries of lk exist.

2
3 L

_E[5§5§T] = Rk(e), Rk(e) exists, is finite and positive

definite for all k.

lim-% sz(e) =z R{g}, R{g) exists, is finite and positive
k

definite for all k.

The limit of n~2 times the sum of variances of an arbitrary

2
3 2y
linear combination of elements of the matrices [———— + Rk(e)]
; Do 3930
is equal to zero as n approaches infinity.

n“! times the absolute value of the third derivative of 2k is
bounded abowve by a function with finite expectations and
variance independent of the true parameter value. The limit of
the average expectation of the third derivative as n approaches
infinity exists and is finite. The average variance of an
arbitrary linear combination of the elements of the third
derivative exists and is finite.

2k, 245
a8 ]

exists and is

See Kendall and Stuart, (1973}.

91t is assumed that h is constant as n increases so that T also

increases. If instead T is kept constant while n increases and h decreases,
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one of the regularity conditions will be violated. In particular,

lim % I kae) is unbounded (see footnote 7 and Section 4).
k

10Of course, the distribution of z is not the Student's t since the

numerator and denominator are not statistically independent. However,
asymptotically it is normally distributed.

"1 am grateful to Eric Rosenfeld for providing me with the wvariance
estimates for these stocks.

12Specifically, using the Bonferroni correction for the simultaneous
testing of five hypotheses at the 5% level, the appropriate critical wvalues
for a two-sided test is +2,58 (corresponding to a tail probability of slightly
less than-zgé %, For all five options, the associated ;-statistic falls
within the critical region hence the simultaneous hypothesis may be rejected
at the 5% level.

131 thank Krishna Ramaswamy for suggesting that I explore this issue.

14The random number generator used was the subroutine GGNQF in the IMSIL
software package. All computations were done in double precision FORTRAN on a
Digital vaxXx 11/780.

15The complete set of simulation results are available from the author
upon request.,

168ee Pearson and Hartley (1970}, Table 34B,

V7see Fama (1976), Table 1.9, p. 40.

185ee Arnold (1974) chapter 6.

195ee Kushner (1967).

20See Schuss (1980} chapter 4, Note that the particular transformation T

may be derived explicitly by solving a specific differential equation given in

chapter 4.
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21 por perhaps its first application in the econometrics literature, see

Hausman and Wise (1983).

22Since dW and AN are independent and the coefficient functions do not
depend on Y, we may consider the combined process as the sum of a diffusion
process and a pure jump process. The probability law of y may then be
deduced by computing the convolution of the probability laws of the jump and
diffusion components. Since the probability law of the diffusion component is
absolutely continuous with respect to Lebesgue measure, it may be concluded
that the probability law of Y is also absolutely continuous with respect to
Lebesgue measure {see Chung (1974) chapter 6, problem 6) hence the conditional
likelihood is well~-defined. Letting V and Z represent the corresponding
diffusion and jump processes respectively so that 4dY = 4V + 42, the

conditional likelihood of Y may be obtained by calculating explicitly the

convolution of

pv(V, t) and pz(z, t) where:
2 Db (v - VO ~ ut)z 7 Por 2
= - = 1
pylVs t) = [ 270" t] exp| . ] - = ag ~ /28,
Ot
0 -3t k
e "T()\t) 1
po 2 t) =¢c § —2>——g(c Z~-%k) , € =—-pr——
z k=0 ki 1n(1+¥0)

where §(cZ - k) is the delta-function. After some algebraic manipulations the
convolution reduces to the conditional density given in Example 3.

235ee Gel'fand and Shilov (1964) for the theory of generalized
functions. As a simple example, consider the pure jump process dX = dN which
is simply a Poisson process with rate ). Using the delta-function, the

transition density of X may be expressed as:

e-;\t()\t)k

T §(X - k) .
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In this case the forward equation given by (5) reduces to:

g =
5t Loyl = Meg(X =1, 8) - (X, B)] .

By taking the derivative of Oy with respect to time t, we have:

®© -3t k o -3t k-1
- X
3oyl = 1 —"%ﬁa(x-k) +op A€ ]i}t) §(X - k)
3 k=0 ' k=1 ‘
Atk ® oAt K
=z P2 smewoen p D x -1 x
k=0 ' k=0

= Afp (X - 1, £} - p (X, B)] .

24500 Merton {(1971) or Brockett (1984),.
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TABLE 1. VALUES OF Kl ' KZ ' K3 FOR VARIQUS TIMES-TO-MATURITY.

TAU K K K
1 2 3
1.00 1.00057 0.99577 1.0042%
5.00 1.00286 0.97904 1.021431
9.00 1.00315 0.96259 1.03887
13.00 1.00745 0.94841 1.05662
26.00 1.01488 0.8857Q 1.11845
r = 0.1090 {annual)
g = 0.500 (annual)



4

TABLE Za. ESTIMATION RESULTS FOR LITTON CALL OPTIONS (N = 312, 6% = 0.00254)
S E TAU F /v F
ML F
(Z-STAT)
21.500 24,375 9,00 0.791 6.0120E-02 1.000
(~3.48)
21.500 15.000 9.00 6.768 8.6664E-03 7.000
(-2.868) :
21.500 20.000 9.00 2.665 5.7653E~02 3.000
(—5181)
21.500 25.000 9.00 0.647 S.6121E-02 0.813
(-2.96)
21.500  30.000 9.00 0.107 2.0796E-02 0.188
21.500 24.375 22.00 = ——mee—— e b
21,500 15.000 22.00 7.302 3.6421E-02 8,125
(-22.06)
21.500  20.000 22.00 3,754 9.1758E-02 4,125
(-4.04)
21.500 25.000 22.00 1.665 1.0232E-01 1.875
(=2.05) -
21.560 30.000 22.00 0.669 7.5195E-02 0.688
(=0.25)
21.500 24.375% 29.00 ——— ————— b
21.500 15-000 29-00 —————————————— a
21.500  20.000 29,00 4.226 1.0477E-01 4,625
(-3.81)
21.500 25.000 29.00 2.138 1.1952E-01 2.375
(-1.98)
21.500 30.000 29.00 = emm—eme b

a - Not traded.

b - No option offered.



| TABLE 2Zb. ESTIMATION RESULTS FOR N. SEMI. CALL OPTIONS (N

"2
312; UML=

~

S E TAU F /9 F
. ML F
(Z2-5TAT)
23.375 15.000 5.00 B.516 3.6902E-03 B.750
(-63.41)
23.375 20.000 3.00 4.002 4.5871E-02 3.750
(5.48)
23.375 23.000 3.00 1.232 7.0585E-02 1.063
(2.39)
23.375 30.000 2.00 0.258 3.72Z205E-02 0.125
(3.57)
23.375 33,000 3.00  memem——— a
23.375 15.000 18.00 9.143 4.5831E-02 9.375
(=5.06)
23.37S5 20.000 18.00 3.494 1.0753E~01 4.625
(8.08)
23,375 25.000 18.00 3.049 1.3832E-01 2,438
(4,48)
23.375 30.000 18.00 1.608 1.2566E-01 1.000
(4.84)
23.375 33.000 18.00 0.82%5 S.68800E-02Z2 0.373
{4.65)
23.375 15.000 25,00 g.518 6.7339E-02 9.500
(0.27)
23.37% 20.000 23.00 6.120 1.2B17E-01 3.625
(3.86)
23.375 25.000 25.00 3.769 1.5916E~-01 3.375
(2.48)
23.375 30.000 25.00  —ememe—e— b
230375 35|000 25.00 TEmm——— . e————— b

a ~ Not traded.

b - No option offered.

0.0074¢6;



TABLE Zc. ESTIMATION RESULTS FOR TANDY CALL OPTIONS (N = 312,8§L = 0.00456)
A = _
=] E TAU F / v F
ML F
28.500 22.500 1.00 6.039 5.4202E-05 5.730
(5.33E03)
28.300 25.000 1.00 3.3560 4.1360E-03 3.250
(7.486)
28.500 30.000 1.00 C.266 2.4046E-02 0.313
(-1.85)
28.500 35.000 1.00 ——ememem o a
28.500 22.500 14.00 = ememmeee e b
28.300 25,000 14.00 53.192 8.7359E-02 5.000
(2.20)
28.500 30.000 14.00 2.3530 1.1495E~-01 2.500
(0.286)
28,300 35.000 14,00 1.089 9.6560E-02 1.000
(0.92)
28.3500 22.500 21.00 = e——mm—= cmma——a b
28.500 25.000 21.00 5.888 1.1052E-01 5.230
(=3.28)
28.300 30.000 21.00 3.321 1.4002E-0Q1 3.500
{=1.28)
28.500 35.000 21.00 | —e——e—— —————— L

a - Not traded.

b - No option offered.
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