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The Arbitrage Pricing Theory 1s extended to a setting where investors
possess information about future asset returns. A no-arbitrage pricing
restriction is obtained with arbitrage defined conditional on the investor's
information. The restriction can be stated with either conditional or
unconditional expected returns, but both versions of the restriction contain
the factor loadings identified from the unconditional covariance matrix of

returns.
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1. INTRODUCTION
Popular financial pricing models relate expected asset returns to
covariances between asset returns and other variables. The underlying models
of portfolio behavior implicitly assume that individuals use whatever
information they have to assess means and covariances, but this conditioning
on information is not often an explicit feature of the models. As a

consequence, empirical tests typically compute estimates of unconditional

means and covariances, i.e., estimates based solely on historical returns.
Such a simplification conforms to the theory if, for example, any information
received by investors is independent of future asset returns. In that case,
conditional and unconditional moments are identical. If investors instead
receive information that is correlated with future returns, then the
unconditional distribution of returns may noi be appropriate for testing the
theory.

This study extends the Arbitrage Pricing Theory (APT) of Ross (1976,
1977) to a setting where investors possess information about future asset
returns. Returns are assumed to obey a factor model unconditionally. That
is, an “"uninformed" econometrician, who possesses only the unconditional
{(historical) distribution of returns, identifies a factor model generating
returns. It 1s not assumed that investors perceive this factor model when
conditioning on their information. Nevertheless, no-arbitrage pricing

restrictions are obtained, and these restrictions involve the factor loadings

from the unconditional distribution of returns. The latter property is

convenient for estimation and is consistent with previous empirical work om
the APT. In fact, a special case of the model presented here is the original
APT restriction on unconditional expected returns.

Section 2 describes the statistical setting, defines arbitrage, and



derives a restriction on the expectations of an investor who perceives no
arbitrage given his information set. A similar restriction follows for any
subset of that information set. Section 3 discusses empirical implications
and briefly considers applying the model to heterogeneous-information

economies,

2. THE MODEL
Let ry be the return on asset i, and for N assets let

Eﬁ = [rl, v ey rN]. Define the mean and covariance matrix of the

unconditional (marginal) distribution of returns:
Mo =Ef ), (1)

Wy = Elley - gy - g0t (2)

Assumption 1. Vy admits a K-factor model. That is,

V. = ANALI+ D (3

N N’

where AN is N by K, Dy is diagonal with ith diagonal element djq. and there 1is

ad < *® such that

< < R
0 dii d for all i (4)

The augmented loading matrix, BN = QlN AN), has rank K + 1 for sufficiently

large N, where 1 is the unit N-vector.

N

The structure for Vy in (3) implies that, unconditionally, returns are

generated by a factor model,

-~ - - ~

r, =MW 4+ A %X + . ..+ X KK + €

1 =Wt A 1 g0 1= hoo o N, (5)



where B is the 1ith element of lh and Aij is the (i, j) element of AN. The

xj's have zero means and unit variances, and they are uncorrelated across ji;

the Ei's have zero means and variances dijis and they are uncorrelated across

1. An investor can possess information, however, implying that the Ei's are
not uncorrelated when conditioned on that information. Then, as far as that
investor is concerned, there is not a K-factor model generating returns.

Let Y denote the information set of a given investor. Define the mean

and covariance matrix of returns conditional on information:

BD) = E{ENIY} , _ (6)

L0 = E{lry - w ], -y}, (7

Assumption 2. The conditional covariance matrix can be expressed as

Ig(D) = AGIDA + F(Y) - A(Y) (8)

where G(Y) and AN(Y) are non-negative definite, FN(Y) is diagonal with ith
diagonal element fii(Y)’ and AN 1s the same as in (3). There is an f{(Y) ¢ =

such that

0 < fii(Y) < f(Y) for all 1 . (9)

The restriction in (8) permits the conditional variance of a portfolio's

return to exceed the unconditional variance, but only through sources of

variation (i) independent across assets or (ii) linearly related to the K

factors in (5). To see this, note that if AN(Y) 1s absent from (8), then
asset returns are generated (conditionally) by a factor model with the same

A 's as in (5):

ij



= . = .« s . 10)
r, ui(Y)+Aﬂzl+.. +AiKzK+ni, i=1, , N, (

ith element of l&(Y). The rk‘s have zero means and

where ui(Y) is the

variances f;;(Y), and they are independent across i; [zl, o s ey ZKJ is a

-~ ~ -~

linear transformation of [xl, e o =y xK], but the z,'s need not be mutually

i
uncorrelated.1 The subtraction of AN(Y) cannot increase the variance of any

portfolio, but a full Ay(Y) generally destroys the uncorrelatedness of

the T&'s and, thereby, the factor structure in (10).

Note that (8) admits restrictions of the form,

ZN(Y) = h(Y)VN - AN(Y) . (1)

where h(Y) is a scalar and constant for all N. 1Iet Y he the realization of a

random vector, y, As shown in the appendix, (11) obtains if L and y are

jointly Normal or Student t, Thus, the algebraic restriction in (8) can be

replaced with a (stronger) distributional assumption:

- -~

Assumption 2'. The joint distribution for returns, Ly and information,_z,

is (i) multivariate Normal or (ii) multivariate Student t.2

Assumption 3. The elements of l% and AN are finite,

The APT considers an infinite sequence of economies indexed by N. The

above assumptions pertain to any set of N assets, but there is a kind of

“stationarity” imposed on the parameters:

Assumption 4. The parameters in (1) through (11) relevant to any specific

asset are constant for all values of N.3

The last assumption requires that the number of assets does not supply

information about future returns (i.e., Y does not vary with N).



Arbitrage is defined with respect to the investor's information set, Y.

Let EN be a vector of amounts invested in each asset. Arbitrage is defined as

the existence of a subsequence (indexed N) of portfolios such that

chl.=0 (12)
N
lim  Ef{clr.lY}= =, (13)
N+w N
and
1im  var {EL EaIY} =0, (14
B> N N -

An investor arbitrages by forming a subsequence of zero-investment portfolios
where, given his information, the variances of the portfolios' returns
approach zero while the expected portfolio returns become infinite.4 Such an
opportunity is described as "Y permits arbitrage.”

The absence of arbitrage implies restrictions on the investor's

expectations.

lemma 1. If Y does not permit arbitrage, then there exist m(Y) ¢ * and

(D, v (D, - o, Ty(D) } such that

1 =

K
[ECe, |0 - ay(D) - j>:= Ay Yy (D P <m(y) for N=1, 2, . .. (15

[N

=1 1

Proof. The proof follows that of Huberman (1981, theorem 1). lLet

' = 1 -1,
Log(® s YDy + v Y (D] = (D = (RIB)T BIU(Y) and let

5
EN(Y) =_£N(Y) - BNﬁN(Y). If the lemma is false, then |Eﬁ(Y)H goes to

"~

infinity on some subsequence, N.6 Define the subsequence of portfolios,



ca(Y) = a (V)b (Y), where a.(y) = QE,(Y)HZP for p € (-1, -L@ ). [Note

N N N N N

ci(Y)2. = 0 since BLb.(Y)
N NN

0 .] The conditional mean is

p+2

, which becomes

E[cMDEAY] = cMDUAD) = a(D (V)1 = (V) I
N N N N N N N

infinite as N + =, The conditional variance is var[EK(Y)rnlY] =
N N

M) LDV = A (DBYY) [F(D - A0 (1) < dily) (1) PED =
N N N N N N N N

A

p+2f(Y), which goes to zero as N + «, [The inequality follows from

I (1) 1
N

(9) and the non-negative definiteness of Ag(Y).] O0.E.D.

It can also be shown there exists a fixed set of constants (given Y)

satisfying (15) for all N.

Theorem 1. If Y does not permit arbitrage, then there exist m(Y) < * and

p(Y), YI(Y), e . ey YK(Y) such that

b K
G R SR W RSN R TC (16)
1=1 j=1

The proof of theorem 1 is identical to that given by Huberman (1981, theorem
2) and is omitted here.
The key to (15) and (16) is that the factor loadings (lij's) are

identified from the unconditional covariance matrix and are, therefore,

constant for all information sets. This property is useful in aggregating
these restrictions to "coarser” information sets. A preliminary step is to
recognize the probabilistic nature of the upper bound, m(Y). For any Y that

does not permit arbitrage, lemma 1 guarantees an m(Y) < ®, but m(Y) need not



be constant for alternative information sets, Let Y be the realization of a

random object, Y.

~

Assumption 5. If no realization of Y permits arbitrage, there exists a

function, m{¥), in (15) such that

Em(Y)} < = . a7
Saying that "no realization of Y permits arbitrage” is basically ruling
out arhitrage ex ante. That is, an investor knows he will not receive
information allowing him to arbitrage. In such a case, any less—informed

investor faces a constraint on his expectations identical to (15). The “less—

informed” investor observes only Y*, a subset of Y.7

Lemma 2. If no realization of Y permits arbitrage, and 1f Y* is a subset of
Y, then there exist m(Y*) ¢ = and {pN(Y*), YlN(Y*), . . ey YkN(Y*)} such that
K

[ECr [ 7%) = oCy%) - P

[ e Rt

¥ jN(Y*)] <m(Y*) for N=1, 2, . . . (18)

i
]
—

Proof. Note (15) holds for j&(Y) defined in the proof of lemma 1. 1let

Loy (), (Y oo Y (P ] = 8 () = E[8(D|¥*]. (specifically,
~1

j%(Y*) = (BﬁBN) B&ELHN(Y)IY*].) Take the expectation of both sides of (15)

conditional on Y*. By Jensen's inequality, the ith term on the left side is

K
E“E(rilY) p(¥) - L Ay 1N(Y)] lyx} > {E[E(rilY)lY*] ~ E[p (0 {y+]
K

K
2 = -— —_—
- JilkijE[YjN(Y)IY*]} = {E(‘-'ilY*) Py (Y*) ): ij jN(Y*)} Thus, the

lemma holds for j&(Y*) and m(Y*) = Ebn(Y)IY*]. 0.E.D,



The analog of theorem ] also holds in this case [and the proof is again

identical to that of Huberman (1981, theorem 2)]:

Theorem 2. IUnder the conditions of lemma 2, there exist m{Y*) < * and

p(Y*), Yl(Y*), .« e ey YR(Y*) such that

b K
OB, |Y%) - oY) - I AL v.(T) P < m(vr). (19)
1=1 1 j=p 131

A special case for Y* is the null set.8 Then (19) becomes a restriction

on unconditional means that closely resembles the original APT [Ross (1976,

1977)1:

Corollary. If no realization of Y permits arbitrage, then there exist m ¢ *

and p, Yl, . . sy YK such that

[ : 2
E(r,) - p—- L A7, <m . (20)
=1 i i=1 i3 ]

""'Ma

Of course, (20) can also be obtained by ruling out arbitrage unconditionally
(i.e., for an uninformed investor). [See Huberman (1981).]
Several characteristics of the restrictions deserve mention. The sum—of-

squares bound in (16) implies an approximate linear relation,
w A
Ele, Y] = o)1, + A, (21)

where Y'(Y) = [YI(Y), . e ey Yk(Y)]. The relation is "approximate” in that
the mean squared error in (21) vanishes as N + ®, [A similar statement holds

for (19) and (20).] If there is a risk-free asset with return rp, then it is

straightforward to show that p(y) = p = rF.q The interpretation of the Y's,

or "factor premiums,” is less straightforward. There are conditions, however,



under which Tj in (20) is the unconditional expected return on a “"fully
diversified” portfolio with a loading of unity on the jth factor and loadings
of zero on the other factors. [See Ingersoll (1982).] Similarly, ﬁj(Y) in
(16) can be interpreted as the conditional expected return on the same

portfolio.lo

3. IMPLICATIONS

3.1 FEmpirical Work

Fundamental to empirical investigations of the APT is the hypothesis that
asset returns obey a factor model as im (5). [E.g., Roll and Ross (1980),
Reinganum (1981), and Chen (1982).] Moreover, the factor model is estimated

unconditionally, using only time series of returns. This study fiands that an

unconditional factor model is relevant to the APT even when arbitrage is

conditioned on information about future returns.
In addition to investigating a factor model, researchers typically test

for a linear relation between the vector of unconditional expected

returns, E(E)’ and the columns of Ql A). This remains an appropriate test of
the APT with information, but the tests can also include conditional expected
returns.!l fact, the relation can hold for a given information set (or
unconditionally) but fail for a more inclusive (finer) information set. The
value of theorem 2 to the econometrician is that tests using conditional means
need not include the entire set of investors' information. Subsets of this
information, such as publicly reported data, can also be used to test the
model.

All tests, whether conditional or unconditional, that treat the APT as an
exact linear relation face a problem. The bounded sum of squares [as in (20)]
implies that linearity holds arbitrarily well for an infinite number of

assets, but the linear approximation can be poor for a finite set of assets—



possibly the set chosen by the researcher.12 It seems necessary for the
researcher to argue that his set of assets is a random sample from an
arbitrarily large (infinite?) universe of assets. Within a fixed—-size random
sample, the number of assets violating linearity (to an arbitrarily close
approximation) approaches zero in probability as the underlying universe grows

large.13

3.2 Homogeneous versus Heterogeneous Information

The model requires that an investor receives information consistent with
assumption 2 (or 2'). The rational expeq;ations literature makes an Important
distinction between (i) initial information possessed by investors before the
market opens and (ii) revised information that includes inferences from
subsequent prices. Normality 1s commonly assumed as the joint distribution
for returns and initial information [e.g., Grossman (1978)]. If information
is homogeneous across investors, then the same distribution holds, of course,
for returns and revised information. Thus, it is straightforward to apply the
no-arbitrage results in section 2 to a sequence of economies with joint
Normality (as in assumption 2') and homogeneously informed investors.,

If inftial information is heterogeneous across investors, then an
assumption about initial information is not necessarily preserved in the
revision to include prices. To correctly apply the model under rational
expectations, assumption 2 (or 2') must describe the revised information
set. Nevertheless, it appears that this assumption is valid for some
heterogeneous~information economies. For example, Admati (1982) assumes
initial information is Normal and obtains a "noisy” rational expectations
equilibrium price that is also Normal.l4

If the model holds with heterogeneous information, then (21)

characterizes beliefs across all investors who percelve no arbitrage

10



opportunities, The vectors of such investors' expected returns are
approximately (as described earlier) spanned by the columns of (1 B, Aside
from the approximation in (21), no-arbitrape investors can disagree only
about p and_I. For example, 1f p(Y) = rF and K = 1, then investors disagree
only about the expected return on a fully-diversified "market-factor"
portfolio (e.g., bulls vs. bears). This occurs even if no investor perceives
a factor model given his information.l> Essentially, the same factors that
appear in time series of ex post returns also appear cross—-sectionally in
investors' ex ante returns (or in the time series of ex ante returns for a

given investor).

11



APPENDIX

This appendix demonstrates that (11) is implied by assumption 2°',

Let

r. be N x1 and y be £ x1, We first consider the Student t and then obtain

~N

the Normal as a limiting case.

(1) [EN' z] cbeys a multivariate Student t distribution with Vv degress of

freedom. Define

N v e b
cov [N =525 [5F V).
ry yy
Then
_ v
VN :COVlLN] e 2 2:t'r
and
_ v -1
z:N(z) = COVENIX-J - L4+ v-2 1+ q)[zrr - zI‘yz}’}’zll'yj ’
where

1 ~1
=35 k-l x-mp].
[See Zellner (1971, appendix B.2).] Thus, (A3) satisfies (11) with

(v-2(1 + q)
Wy = g5 5-g

and

(ii) [EN j_] obeys a multivariate Normal distribution. This case is

obtained from the above by letting Vv + ®  Then h(y) =1 and

AN(-X) = EryZ;E;y. [See Zellner (1971, appendix B.1).]

12
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FOOTNOTES

et 2 = P(Y)x, where G(Y) is factored as G{(¥Y)} = P(Y)P'(Y). Note
E[EE'} = G(Y). I am grateful to an anonymous referee for sugpgesting the
formulation in (8) and its interpretation via (10).

2An important difference between the two distributions is the effect of
information on variances. Since the Student t allows y to affect I(y), it is
possible that some y's cause conditional variances of portfolio returns to
exceed unconditional variances. Such a scenario is impossible with Normality
since I(y) is then constant. (See appendix.)

A Student t distribution could also be more satisfactory for empirical
reasons. Blattberg and Gonedes (1974) conclude that daily common stock
returns closely obey a Student t distribution, and such returns have been used
in tests of the APT. [F.g., Roll and Ross (1980).]

3

Since AN is unique only up to an orthogonal rotation, it is implicitly

assumed that a given rotation is preserved as the (N + DD row 1s added.
aArbitrage is "asymptotic™ in the sense originally described by Ross

(1976, 1977), but the precise definition follows that of Huberman (1981). As

Huberman notes, further conditions are needed to guarantee that (12)-(14)
imply an unhounded subsequence of (conditional) expected utility.

5It is implicitly assumed that subsequences begin with N large enough to
give By full column rank (cf. assumption 2).

bFor an N-vector v with 1th element Vi qznz = g vi.

7It may be useful to describe this setting morei;érmally. IEt.EN be a
random vector on the probability space, (R, S, P). ILet Y be a random object,
Y:(&2, S) » (R, S'). Assumption 5 states that m(Y) is Borel-measurable on
(', 8') and Py—integrable, where Py(A) = P{w: Y(w) € A} for A € 8., (This
implies m is finite almost everywhere on Py). Also note, for example, that
E(EN,Y) can be represented as E(ENIG), where G is the ofield induced by
Y [G = Y_I(S')]. Saying "Y* is a subset of Y' is shorthand for conditioning
on a sub o-field of G, say G*. If Y* = g(Y), g:(Q', §") + (2, S§"), then

-1
take G* = [g{(Y)] "(S"). ({See Ash (1972, section 6.4).]
8That is, condition on the coarsest o-field, {¢, @' }. (Cf. footnote 7.).
9See Huberman's (1981) development of this corollary to his theorem 1.

1OSee, in particular, Ingersoll's (1982) theorems 3, 4, and 6. A "fully
diversified” portfolio is the limit of a sequence of positive net investment
portfolios with weights Sy such that N!ENIZ is wniformly bounded, The key

assumption in this interpretation of the Y's 1s that ON = B&BN/N is

13



nonsingular in the limit. The extension of Ingersoll's theorems to

conditional expected returns is straightforward, since Oy 1s invariant with

respect to Y.

Hohe approach of Gibbons and Ferson (1981) could be useful here.

1211 point is stressed by Shanken (1982), Connor (1981) develops a

stronger version of the APT in which the sum of squares is asymptotically
zero. Connor makes additional restrictions on asset supplies and imposes a
competitive equilibrium instead of the weaker no—-arbitrage condition.

13consider a sample of size n from a population of N assets, and hold n
fixed as N goes to infinity. For a given 8 > 0, let L be the number of assets
in the population such that

IE(ri)-p-ZlﬁY] > 8, (*)

i i
and note [ < m/62 if (20) holds. TFor an asset randomly selected from the
population of size N, define Py = prob{(*)}, and note Py = L/N < m/Nﬁz. If %
is the number of assets in the sample that satisfy {*), then
prob{2 >0} =1- (1 - pN)n <1 -(1l - m/Ncsz)rl for N » m/62. Thus
plim £ = Q.

N ¥

laAdmati's equilibrium price is actually the limit on a sequence of
economies in which the number of agents becomes infinite but the number of
assets 1s fixed. An application of her results to this setting would also
require the number of assets to become infinite, and this possibility remains
to be explored. [Equilibrium in her model precludes exact arbitrage but not
necessarily the asymptotic arbitrage as in (12)-(14).]

15There is a special case in which a factor structure is commonly
perceived. Assume (i) r and y are jointly Normal and (i1i) the distribution of
returns is compact [e.g., Samuelson (1970)] in that, if h i{s the length of the
shortest trading interval, then mean and variance are both of order h.
Conditional on y,

L= ¥ph+ Ny)eh

where F(X)P'(X) = Z(z) and € is a vector of independent standard Normal
variates. Note E{hi -_E(X)J[']'Iz} = hi(y), and unconditionally,

E{hi —_B][']'} = hi(y) + hzcovLE(z)] since I(y) 1s constant under Normality.
Thus, differences between the conditional and unconditional covariance
matrices are of order h2. As h +dt, an unconditional factor structure (for

V) must also represent (y).

14
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