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1. Introduction

Introduction of the rational expectations hypothesis has produced a minor
boom in new econometric techniques. Because rational expectations forces
restrictions on the stochastic interaction of observable and unobservable
variables, estimation and hypothesis testing conditional on the existence of
rational expectations frequently becomes possible. 1In particular, economic
hypotheses that depend on the unobservable expectations of market participants
can be considered if these unobservable expectations are known to be
rational. 1 begin the econometric discussion in this paper with the
examination of a well-known method of single equation estimation conditional
on rational expectations. I then present a new statistiec that tests the
rational expectations hypothesis per se.,

Rational expectations based tests may be subdivided roughly into three
categories. In the first catégory an entire economic model is known.
Behavior depends on the expectations held by market participants of variables
whose realizations are determined endogenously within the model., If
expectations are rational then the predictions of the model ought to be the
same as these expectatiomns. Strong tests within this category have recently
been suggested by Wallis [11] and by Revankar [7].

In the second category, we observe a variable that ought under rational
expectations to contain all available information about the occurence of
another variable. Well-known examples include the idea that stock prices
ought to be a random walk, that a forward rate (on foreign exchange for
example) ought to be an unbiased predictor of the future spot rate, and that
under the permanent income hypothesis today's consumption is the best
predictor of tomorrow's consumption. These sorts of tests can usually be

executed using ordinary least squares, because under the null hypothesis the



€rror term must be uncorrelated with the observable rational expectation.
Extended versions of this notion are considered in Abel and Mishkin [1].

The attention of this paper is focused on the third category. We
consider the problem of testing when the realization of a variable is
observable, but its market expectation is not. While the market expectation
is undbservable we do see some portion of the information that market
participants used in forming their expectations. Such information ¢can be used
Lo form instrumental variables. The notion of using outside information to
deal with unobservables appeared at least as early as Goldberger [5], in which
a limited-information maximum-likelihood estimator was developed, though
rational expectation was not considered explicitly. MeCallum [6] developed an
instrumental variable estimator that yields consistent structural estimates
and allows for efficient hypothesis testing. The techniques discussed here
follow directly from McCallum's work.

The next section of the paper sets up the problem and then discusses
estimation and hypothesis testing. McCallum's estimator produces consistent
and asymptotically efficient estimates of structural ¢toefficients, if the
rational expectations hypothesis is true. A test of the rational expectations
hypothesis itself is then derived, first by an intuitive argument about the
properties of conditional expectations and then by formal proof. The test
statistic is shown to be a reinterpretation of Basmann's [2,3] test for
overidentification. Finally, it is shown how to jointly test structural
hypotheses and rational expectations. All the required test statistics can be
generated from the results of several auxiliary linear regressions.

| The third section of the paper applies the tests to the hypothesis that
{rationally) expected inflation is independent of the real interest rate. The

hypothesis is rejected at a high level of significance.



2. Hypothesis Testing Under Rational Expectations
We begin with a classical linear regression equation, as in (1). The
dependent variable, y, is a linear function of explanatory variables
e

Xl and Xz, and of a structural error term u. The structural errors are

assuned to be i.i.d. normal and to be independent of both X? and X2.

-
(1) y = xlsl +X,8, +u

If the investigator knew the values of both sets of explanatory
variables, estimation and hypothesis testing could proceed by ordinary least
squares. We assume that X2 is observable, but that X? is not. We do
observe Xl’ the realization of.x?. XT is a set of expectations existing in
the minds of market participants. Market participants base these expectations
on the information set ¢. X; and the elements of ¢ are jointly normally
distributed. Assuming for the moment that X, is known to market participants
at the time expectations are formed, we let x* = [X? XZ]’ X= [Xl Xz], and
include X, in ¢. Fquation (1) is rewritten in a more convenient form in
(2). The null hypothesis, Hy, proposes a set of r linear restrictions, (3).
The rational expectations hypethesis, RE, that expectations are the

mathematical expected value of the realized variable conditional on available

information, is given in (4)

(2) vy =X +u
(3) By: R8 = b
(4) RE: X% = E(X|9)



X can be decomposed into an expectational component and an expectational
error e, X® and e are independent due to the properties of the normal

distribution. There are no restrictions on the correlation of u and e.

While we do not observe all the information in ¢, we do know a subset
Z. The expectation of X® conditional on Z is a linear function of Z.
Let T be a gqxk matrix of unknown coefficients, where the number of ¢olumns in

Z and X® are q and k respectively, we can write (6).
(6) ZT = E(x°12)

Once again applying the properties of the normal distribution, we
decompose X® into its conditional expectation and independent error term v.
Independence of v and e follows from the independence of information and

errors in (4). Independence of v and u and of Z and u follow from the initial
Gauss-Markov assumptions on (2).
(7 X* =2r+v

Appropriate substitutions produce the reduced form equations (8) and (9)

(8) X

Zl+ v + e

(9 ZT8 + vB + u

R
It



Alternatively, we write the reduced form more generally as (10) and
recognize that rational expectations implies the nonlinear

restrictions @ = IR,

(10) vy =20 + vB + u

Equations (8) and (9) are seemingly unrelated regression equations with a
nonlinear ¢ross-equation constraint. If q = k, the system is just
identified. Equations (8) and (10) can be estimated individually by ordinary
least squares, yielding coefficient estimates f and é. f may then be
estimated by é = f—ln. This is the method of indirect least squares. The
rational expectations restrictions are not binding so while é is consistent
and asymptotically efficient,‘no tests of the rational expectations hypothesis
itself are possible. In other words, HO is testable conditioned on RE, but RE
is not testable.

When q > k, the system is overidentified. The system may be estimated
either by instrumental variable (two-stage least squares, generalized
classical linear) methods or by maximum—likelihood methods. These methods are
asymptotically efficient and asymptotically equivalent. Since our interest is
in IV methods, which are also frequently more convenient, the discussion of
maximum-likelihood methods is confined to the next paragraph. Linear
estimation occupies the remainder of the paper.

Equations (8) and (9) may be estimated jointly by nonlinear multivariate
least squares, taking into account the cross~equation constraint and the
contemporaneous correlation of the error terms. The resulting estimator

of 8 is the limited-information maximum=-1likelihood estimator. The

overidentifying restrictions implied by rationmal expectations may be tested by



comparison of the likelihood function from the LIML estimate to the likelihood
function from the unconstrained joint estimation of (8) and (1), See [1] for
further discussion,

The instrumental variable estimator is most easily explained as if it
were literally done by two steps of least squares. In the first stage,
equation (8) is estimated by ordinary least squares. In the second stage, ¥

~

is regressed against the “"fitted" values, ZI, and a residual e,, as in (11).

2

(1) y=(zDB+e,

The OLS estimator of (11), é, is the two-stage least squares
estimator.! MeCallum proposed use of this estimator in his 1974 article and
showed its consistency. If we use-all the information available to us, the
estimator is also aéymptotically efficient. The usual methods may be used for
making hypothesis tests about B. These tests are conditional on the validity
of the rational expectations hypothesis.

The rational expectations restrictions, © = T8, have the following
intuitive intgrpretation. According to equation (10), Z0 is the expectation
of y conditional on Z. According to (2), X8 is the expectation of y
conditional on X®. Rational expectations, (6), tells us that ZI is the

expectation of X® conditional on Z. Since the expectation of y conditional on

lSuppose that X2 is not included in the information set., How is
estimation affected? McCallum suggests using PzXy as instruments for Xy and
using X, as its own instrument. However, %, may be correlated with e, so this
suggestion leads to inconsistent estimates. The usual 2SLS estimation, simply

excluding Xy from Z, is consistent.



Z equals the expectation of y conditional on the expectation of X® conditional

on Z, we have (12).
{12) Zo = ZI'B

In essence, we test rational expectations by testing (12). If we

regress ZG on ZI, we ought to see a perfect fit as the nunber of observations

grows large. A familiar statistic emerges from a little matrix algebra, TFor

convenience, let Py = z(z'z)~lzr,

13 e=(z)"lzty, r=(z) 2y, 8 = (x'PZX)'lx'PZy

~ ~

(14) 20 = ?zy, Zrg = PZXB, y = sz, X

P X

AN -~ A

(15) 20 - ZIR = y - XB

Equation (15) demonstrates that the differences between the two
conditional estimates are the residuals from the regression of the fitted y on

are i.i.d. N(O, GZ). The asymptotic
2

the fitted X. let p=v - ef, ui

distribution of the sum of squares of (15), S§R, follows.

(16) o - ré = (Z'Z)-lZ'[I - X(X'PZX)—IX'PZ]u

The asymptotic¢c distribution of © - I'f is singular normal.

2With some renaming of variables, this proof is taken from Basmann [2].
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(17 o - T8 4 sN(0, oplin [(2'2) }- (z'2) e trzezeny Tl

~ A A A

(18) s8R = (y - XB)'(y - XB) = (0 - [B)'(2'2)(6 - )

. 2 . 2 3
The sum of squares (15), divided by ¢~, is asymptotically x“(q-k).
It remains to produce a consistent estima;or of 02. The usual estimator

is the sum squared residuals divided by n or by n-k. However, Basmann [1960]

recommends use of the sun squared residuals minus the fitted sum of square

residuals. Basmann also suggests that the test statistic in small samples is

more closely approximated as being F(q,n-k). Either of the estimators in (20)

. R . 2
gives a consistent estimate of o°.

(19) SSR = (y - xé)'(y - Xf;)

(20) s2 = $SR/(n~k) or s2= [SSR - s§a]/(n-k)

The test statistics A = SgR/s2 and A/(q-k) are distributed
asymptotically xz(q—k) and F{q-k,n-k) respectively. These are Basmann's
statistics for testing overidentifying restrictions. They test the rational
expectations hypothesis independently of any structural tests,

Structural hypothesis testing conditional on rational expectations makes
use of the usual asymptotic XZ or F tests., To test the r linear
restrictions RB = b, we look at the difference of (“second-stage”) residuals

~

using 8 and the restricted 2SLS estimator b.

3See [Searle] p. 69.
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(21) 3SR = (v - XB)'(y - XB), ssr” = (y - XbB)"(y - Xb)
(22) (s§R* - ss:R)/s2 a xz(r)

The numerator of (22) is written out in (23).

1 1 1

~ % - - - - -
(23)  SSR” - SSR = WP X(X'E,X) T R'[R(X'P,0 R TR(X'2,0) KR 0
Both (23) and SSR can be written as quadratic forms in u. Since the two

quadratic forms are independent, the sum is also distributed XZ. (24) follows

immediately.

(24) [SSR” = SSR + SSR]/s2 & y2(r+q-k)

The critical value for a xz(r+q-k) is less than the sum of the e¢ritical
values for a xz(r) and a xz(q—k) at any of the usual levels of significance.
Thus if both separate test statistics indicate rejection, the joint hypothesis
will also be reje¢ted. In addition, the joint hypothesis may be rejected even

though neither separate test fails,



3. Testing the Independence of the Real Rate of Interest

and Expected Inflation

Since early discussion by Irving Fisher, there has been an ongoing
dispute as to whether the expected real rate of interest is independent of
expected inflation. The Fisher equation states that the nominal interest rate

equals the expected real interest rate plus the expected inflation rate.
e
(25) i =1% 47

Fama [4] found evidence'confirming the joint hypothesis that r®
and n° are independent and that r® has been constant during much of the post-
War period. Recently, Summers [10] applied McCallum's test and rejected
independence, though not on the same sample period as Fama. Startz [9]
rejected the hypothesis, jointly with other hypotheses, on the same sample
period as Fama. Here, we test the Fisher hypothesis by MecCallum's method,
test separately for the rationality of inflationary expectations, and then
test jointly. Therefore, we are testing the same hypothesis as proposed by
Fama, without the restriction of a constant expected real interest rate. The
data used is described in [9].

Expected inflation is unobservable. However, under rational
expectations, the actual inflation rate equals expected inflation plus an
uncorrelated prediction error, The expected real interest rate is also
unobservable. We can write it as the sum of its mean and deviations around
that mean; = o+ (re - a). Equation (25) can be rewritten in terms of

observable variables and a two-part structural error term.

10



(26) 1= a+ Br+ (£ =) + (xS - M

We wish to test the structural hypothesis B = 1 subjest to the rational
expectations hypothesis e = E(w{®), Estimation of (26) by ordinary least
squares yields a classic example of errors-in-variables, since 7 is certainly

correlated with "e - M.

Obvious candidates for information useful to market participants in
predicting current inflation in¢lude recent lagged values of inflation. Uader
rational expectations, these are uncorrelated with the inflatien prediction
errors. Under the null hypothesis (which presumably extends to
noncontemporaneous as well as contemporaneous correlation) lagged inflation is
uncorrelated with the expected real interest rate. We can use lagged
inflation rates as instruments and use McCallum's technique, as Summers did,
We can also use Basmann's statistic to test for rational expectations, MNotice
that if 8 # 0, then the lagged inflation rates are not valid instruments.
Therafore the two hypotheses cannot really be tested separately and the joint
test statistic derived in the previous section is particularly appropriate.

The tests are run on monthly data from 1/53 through 7/71, for a total of
223 observations. One month treasury bill rates and rates of c¢hange of the

CPI provide the data. The results of ordinary least squares estimation are:

(27 i= 2.476 + .3007
(0.112) (0.031)
2

R™ = .30 ser = 1.29 D.W., = 0.0573

The results of running Fama's test would appear to confirm independence.

(28) T = =0.847 + ,984i
(0.357) (.102)

R = .30 ser = 2.34 D-wo = ].- 77

11



The results of instrumental variable estimation using a constant, and

three lagged inflation rates are:

(29) i = 1.403 + .776m
(6.249) (0.096)

ser = 1.86 D.W. = 1.71

The t-statistic on the hypothesis B8 = 1 is 2.345, leading to a rejection with
confidence level between .98 and .99. SéR was 14.5; the regular SSR was
761.7. SgR* and SgR were 319.1 and 300.2 for the tonstrained and
unconstrained versions respectively. Thus the F-statistic for £ = 1 is 5.49
(not surprisingly, the square of the t-statistic). The test of rational
expectations by means of overidentifying restrictions has a test statistic of
4.21. This statiétic, distributed x2(2), is a bit lower than required for
rejection at the 90 percent confidence level. The test statistic for the
joint test, 9.7, is distributed X2(3) . The joint hypothesis can be rejected

with approximately the same level of confidence as with the struectural test.
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4, Summary

Instrumental variables provide a cousistent, efficient (and simple)
method for coefficient estimation and for testing structural hypotheses. In
many economic models, it is difficult to find variables that come with a
guarantée of being valid instruments. Overidentifying restrictions are rarely
tested in practice. Perhaps this is because it is so difficult to know what
economic statement might be associated with rejection, However, the rational
expectations hypotheses requires that information known to market participants
form valid instruments. Thus, rejection of the overidentifying restrictions
leads to a rejection of rational expectations.

In principle, structural hypotheses and the hypothesis of rational
expectations are separate issues. It is possible to accept one hypothesis and
reject the other at a given level of significance., Of course, if the rational
expectations hypothesis is rejected, the structural coefficients are not
consistently estimated and structural hypothesis tests are invalid.

In practice, structural hypotheses and the hypothesis of rational
expectations are often inextricably intertwined. The independence of the
right-hand side variables and the structural error terms frequently only holds
under the null hypothesis; this being all that is required for valid
hypothesis testing, The Fisher effect example explored in section 3 is a case
in hand. If the right-hand side variables are not independent from the
structural errors, then even under rational expectations availabla information
need not form valid instruments. In practice, therefore, it is frequently
impossible to know whether rejection is properly attributed to failure of the

structural hypothesis or failure of ratiocnal expectations.

13



The last element of section 2 is the presentation of a statistie for the
joint test of HO and RE. 1t is possible in a given sample that one individual
test or the other might fail without rejection of the joint test statistie.

If both indicate rejection then the joint test will also cause rejection at
the same level of significance. Even if neither individual test leads to
rejection, the joint test may be strong enough to reject the joint hypothesis.

Independence of expected inflation and expected real returns has been the
subject of statistical investigation for some half century. The evidence in
section 3 rejects independence over a sample period in which previous work had
appeared to confirm independence. Even though the information set is limited
to three lagged values of inflation, the rejection is very strong,

There are a number of e¢onomic hypotheses that suggest the use of
instrumental variable tests. The question of unbiasedness of forward rates
implied in the term structure and observable in foreign exchange markets are
perhaps the most obvious. The direct test of rational expectations proposed

here is an easily executed addition to the econometric repertoire.
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