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STOCHASTIC DOMINANCE WITH A RISKLESS ASSET: THE CONTINUOUS CASE

Yoram Kroll* and Haim Levy* *

Introduction

In recent articles [9] [10], the authors developed First, Second and
Third degree stochastic dominance rules under the assumption that investors
can borrow or lend money at some riskless interest rate, r. These rules are
denoted by the acronym SDR, which stands for Stochastic Dominance with a
Riskless Asset, to distinguish from Stochastic Dominance (SD) rules which were
developed in the late sixties.

SD rules are simple, in the sense that in establishing a preference all
one has to do is to check whether a certain condition holds with regard to the
two well-defined risky options T and G. SDR rules are much more complex,
since we have to determine if a preference exists between {Fa} angd {GB}
according to a certain rule; {Fa} and {GB} include all the infinite conmbina-
tions of the risky options F and G respectively, and the riskless asset.
Thus, the SDR rules, in principle, involve an infinite number of comparisons.
However, Levy and Kroll [10] established various criteria which make it possible
to circumvent the infinite number of compariscns and hence determine if a
preference exists. In any empirical research, the number of comparisons
involved according to the criteria developed in [10] is finite and is a
function of the number of observations at our disposal. To be more precise,
in empirical studies, the cumulative distributions of the risky options are
given as step functions with a finite number of steps which in turn implies

a finite number of comparisons. ILevy and Kroll [11]
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developed an algorithm for a step function and use it in order to establish
First, Second and Third degree stochastic dominance with riskless assets. The
main finding of the empirical study is that the efficient sets shrink dramati-
cally once borrowing and lending is allowed and, in some cases, the efficient
set includes only one or two risky portfolios.

The purpose of this paper is to find SDR rules for continucus density
funetions; &a case vhere the cumulative distribution is not given as a step
function. We develop and investigate the theoretical properties of SDR rules
and do not deal with an algorithm applicable to empirical studies. Neverthe-
less, recall that the rules developed in [10] are general and h?}dﬂf?{‘_
discrete as well as continous distributions. Thus, deriving SDR criteria
for continous distributions we obtain rules which are stated in terms of the
parameters of the distributions under consideration rather than in a general
form. Though these rules‘differ in their structure from the rules given in
[10], the parametric approach yields the same efficient set as the non-
parametric rules developed earlier, since the two sets of rules provide
necessary and sufficient conditions for dominance.

The advantage of the parametric approach developed in this paper is
three-fold: (a) For some continuous distributions the rule is very siuple
and stated in terms of the expected retﬁrn, variance ete. Thus, there is no
need for any computer calculation or for many comparisons in order to determine
if preference exists; (b) Parametric approach yields some theoretical results,
e.g. cases where a "separation" exists; (c) In case of some continuous

distributions (e.g. log normal), one cannot apply directly the rule developed



by Levy and Kroll [10] without an infinite number of comparisoﬁs.l However,
using the parametric approach, one can use the knowledge of the parameters of
the continuous distribution under consideration in order to state if a
preference exists by SDR rules, which are solely functions of the distribution
parameters,

Thus, in a sense, the parametric approach is a further investigation of
the rules developed in [10] for continuous distributions. For some continuous
distributions, we obtain simple rules in terms of the parémeters, but for
some others, the preference criterion may remain a complex one even in the
parametric approach.

In the second section, we present some notations and state the well
known SD and SDR criteria. In the third section, we develop SDR criteria
for continuous distributions, and in the fourth section, we apply these
decision rules to three important distributions: uniform, normal and log-
normal. In section V, we employ the rule developed for lognormal distribu-
tion, and derive the mean-variance efficient frontier. Concluding remarks

are given in Section VI.

II. 8D and SDR rules

Iet X and Y ©be the returns of two risky ventures with cumulative
distributions F and G respectively. Also denote by QF(P) and QG(P)
the P order quantile of F and G. Let u be a Von Neuman-Morgenstern

utility function. Ul stands for the set of &l1 u with u' > 0. Ué denotes

1. HNote that the algorithms of SDR rules applies only to step functions.
Since the lognormal distribution is continuous, it is impossible to
apply the SDR rules given in [10], since it involved infinite number
of comparisons,



the set such that for all u € U2’ u' >0 and u" < 0. U3 denotes the set of
all u with u' >0, u" <0, u''"' > 0. The Stochastic Dominance rules with-

out a riskless asset is given in theorems la, 1b and lc. In the theorems, we

apply the quantile terminology.2

Theorem 1. A necessary and sufficient condition for a deminance of F over G

by all u € Ui’ (i =1, 2, 3) is given by the following conditions:

a. First degree Stochastic Dominance (FSD}):

For all u € U : QF(P) Z_QG(P) for all P in [0,1] and a strict

inequality for at least some P.

b. Second degree Stochastic Dominance (SSD):

P

P .
For all' u€ U3 fQﬂtMt>IQ(tMt for all P in [0,1] and
2> 4 =0 G

a strict inequality for at least some P.

c. Third degree Stochastic Dominance (TSD}):

Pt Pt
For all uw€ U.; J J QF(z)dzdt > [ J g (z)dzat for all p in [0,1]
3 00 oo ©

QO

1
and [ Q (t)at > J Q. (t)at, with at least one strict inequality.
0

For proofs of these theorems, see Quirk & Saposnik [15], Fishburn [5 ],
Hadar & Russell [ 6], Hanoch & Levy [7 ], Rothschild & Stiglitz [16], and
Whitmore [18]. Further developments of SD rules for decreasing ebsolute

risk aversion utility functions were developed recently by Vickson [17] ana

Mayer [13].

2. QF(P) is given by PrF(x j_QF(p)) = P, For a proper definition of @

for the discrete case, see Levy & Kroll [10], p. 554. The quantile
approach was first used in [10]. This framework was a

necessary one for developing the SDR rules. Levy and Kroll

proved that the rules given here and the rules defined in terms of
the cumulative distributions are equivalent.



Dencte the mixture of the random variable X with a riskless asset by
2& and the cumulative distribution of this wvariable by Fa’ i.e.,
X = (1-a)r + aX where 0 < a < and r stands for the riskless interest
rate. Similarly, the mixture of Y and the riskless asset will be denoted by
YB and its cumulative distribution is denoted by GB' The set {Xa}
dominates the set {YB} (or the set {F;} dominates the set {GB}) if and

only if each Y, which belongs to {YB} is dominated by at least one Xa

B

taken from the set {Xu}' Necessary and sufficient conditions for a dominance

of {Fa} over {GB} are given in theorems 2a, 2b and Z2c.

Thecrem 2
A necessary and sufficient condition for a dominance of {Fa} over {GB}

by all u€ U, (i =1, 2, 3) is given by the following conditions:

a. First degree Stochastic Dominance with Riskless Asset (FSDR) for i = 1:

Q,.(FP) - qQ.(P) -
sup Pl - T e B o
(r) QF(P) - r

Sy - < (1)
Fr) <P<1 %) "T T g<p<F

b. Second degree Stochastic Dominance with a Riskless Asset (SSDR)

for i = 2:
P P
[ (4(t) - r))at J (qg(t) - r)as
SUP g < INF 12 (2)
P, <P<1 <P«
0 = (Qp(t) - r))dt 0= Poj (QF(t) - r)jdt
0 0
where PO is the solution of the following equation:
PO



¢. Third degree Stochastic Dominance with a Riskless Asset (TSDR),
for i=3

If there is no P. in the range [0,1] which solves the equation

1
P, t
[ ] (ap(t) - r)azat = o (%)
0 0
then the condition is
Pt 1
[ (QG(z) - r)dzdt Il (QG(t) - rldt
Max[  SUP 00 0 ] <
Pt > 1 =
LSPSt f o) - razat (Qp(t) - r)as
00 0
Pt
J ] (Qyz) - r)azat (5)
o 28
O<P=<P 7] (Qg(t) - r)azat
00

if there is no Pl in the range [0,1] that solve the eq. (L4), then the

condition for dominance reduces to,
(Qg(t) - r)at (Qy(z) - r)azat
(6)

INF
0<P<1

<

—HjOo—Hd
ot O e o

(QF(t) - r)dt (QF(z) - r)dzdt

O H|OV—

00
For a proof of these theorems, see Levy & Kroll [10].

Before we turn to the investigation of these SDR rules in the specific case
of continuous distributions, we would like to mention that, though the SDR rules
are mathematically correct, it appears (even if each éumulative distribution is a
step-function as obtained in empirical studies) that they are impractical. For
example take the BS8DR case; in order to find the SUP in the range '%)< P <1, the

rule tells us that we have to calculate the left hand side of (2) for an infinite



number of points since there are an infinite number of values of ‘P in this range.
However, as is shown in the appendix of this paper, the rules can be applied easily
to distributionswith a step function, and thé critical values (i.e. the SUP

and INF) should be calculated only at the boumndaries of the steps, which is of
course finite. If the distribution functions are not given as step functions,
infinite calculation of SUP and INF is involved, and a parametric approach is

called for.

ITTI. SDR Criteria for Continuous Distributions

Theorems 2a, 2b and 2¢ hold for step-functions as well as continucus
distributions. However, since 1In the continuous case one cannot calculate
the value of INF and SUP for every value P, we will try to find the conditions
for internal extremum over the appropriate ranges of P's for which the SUP
and INF are defined, and then, by comparison of the sppropriate values at the
extremum points, one cen establish a parametric condition for a dominance
reqpiring only cne comparison, i.e. that of the values of the relevant function

at extremum points.

To simplify the mathematical terms, let's adopt the following notation:

§(P) —Erﬁyijj; (1)

(QG(t') - r)at
(8)

OOty '_L‘;D

(QF(t) - r)dt

(QG(Z) - r)dzdt

w(P) (9)

(Qp(t) - r)dzdt

O MO = M
Ormy ot [ O



Iet us start developing the FSDR criterion for continuous distributions.
In order to do so we have to develop the first and second order conditions for
internal extremum of &(p). A suspected point P¥*¥ for extremum of §(P) is

where the following equality holds:

_ Qé(P*)[QF(P*) -r] - Q%(P*)[QG(P*) - r]

98(P) 5 =0 (10)
- 3P [Qp(P*) - r]
This first order condition can be rewritten as
*y _— * 1 *
§(P*) = QL(P*)/QL(P¥) ~{(101)

The second order conditions can be cbtained as follows:

225 (p) _ [Q}(P)(Qu(P) - r) + QL(PIQL(P) - Qu(P)(Q,(P) ~ r) - Qu(P)QL(P) J(Qu(P) - r)?
o8 (ay(P) - )"
_ 2[Qi(P)(ap(P) - r) - @u(P)(Q,(P) - r)N(Q (P) - r)ai(p)

(Qg(P) - 1)

After some reductions and a substitution of first order condition in this

expression, we obtain: QE(P*)
3%5(2) _ G - o) TP (1)
ap” | p=p* [ap(P¥) - r]

The extremum obtained at P* is a maximum if (11) is negative and a minimum if
{11) is positive. We are interested in minimum for points below F(r) and
maximum for points above F(r) (see eq. (1)). Since QF(P) Z r if and only
if P Z F(r), it is easy to show from {11) that the sole condition for a
minimum at a suspected point below TF(r) and for a maximum at a suspected

point above F(r)} is:

QE(P*) < Q;(Pf) s(P*) (12)



Therefore, in order to reveal a dominance by FSDR in the case of continuous
distributions, we do not have to compute &(P} for all P in the range [0,1].
Tt is sufficient to calculate &{(P) for suspected points P¥* of internal
extremum.3 Thus, for a specific continuous distribution, we have to solve (11)
and find the values of P* for which (11) holds. For these P¥*'s we must
check inequality (12). Suppose that two values of P¥* solve (11). If for
these two values (12} holds, we know that the extremum point of &(P¥) for
P* < F(r) is a minimﬁm, and the extremum point &(P¥*) for P* > F(r) is
indeed a maximum. Thus, if the minimum is greater than the maximum, then
isequality (1) holds, and dominance by FSDR can be established for the specific
continuous distribution under consideration. Nevertheless, it may be that (12)
does not hold, which implies that either there is no internal extremum, or that (11)
holds for all values of P. This would in turn imply that one cannot utilize (11) and
(12) directly. In these cases, we have to analyze more carefully the behavior
of the fumetion 6&(P), in order to examine whether the condition given in
eq. (1) indeed holds. 1In the next section, we will demonstrate cases where
(11) and (12) hold, as well as cases where internal extremum point do not
exist and hence (11) and (12) do not hold. In the last case a further investiga-
tion is called for. However, before we turn to sepecific continuous distribu-

tions, let us summarize the conditions for FSDR, and provide similar conditions

for SSDR and TSDR.

Theorem 3a

In order to check if the FSDR condition holds (see eqg. (1)), it is necessary

3. In general we have the density function rather than the quantiles. However,

; 1 . . .
one can use the relationship Q'(P) = D] where f(xp) ig the density
’ o P

function at point"xp = Qp' Using this relationship one can ealculate (11)
and (12).
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and sufficient to check if inequality (1) holds at border points, or suspected
peints P*, where the suspected points fulfill the following two conditions:
8(P¥) = QL(P*)/Q(P¥)

and :
Qn(P*) < Q;(P)es(_P*)
Note that if the above conditions do not hold, &(P) must be monotonic, and it is
enough to calculate its values at the border points. Since there is no internal
cxtremum, the highest. values of . §{P) must be located within the borders of the appro-

priate ranges (see eq. (11). The proof of this theorem has been already discussed

above.

Theorem 3b

In order to determine the existence of inequality (2) of SSDR it is
necessary and sufficient to examine Y(P} at border points or suspected
internal extremum points, P¥*, which fulfill the conditions:

Y{P*) = §(P¥*)
and (13)
Qa(P*) < QL(P*) Y(P¥)

Theorem 3c

In order to determine the existence of inequalities (5) or (6) of TSDR,
it is necessary and sufficient to examine u(P) at border points or suspected
internal extremum points, P¥*, which fulfill the following two conditions:

u(pP*) = Y(p*)
(1h)

and

Qg (P*) < Qp(P¥)u(P*)

Proof of Theorems 3b and 3¢

The proof of theorems 3b and 3¢ is based on the proof of theorem 3a. Let

us prove that (13) are the first and second conditions of extremum of Y(P).
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Define SG(P) and SF(P) by the equations:

P P
SG(P) -r= 6[ [QG(t) - r]dt and SF(P) -r =£ [QF(t) - rjdt

It follows by definition that,

SG(P) -r
() = 8,(P) - r

Thus, Y(P) has the same form as 8(P) and by analogy to the formation of
first and second order conditions of &(P), we can conclude that the proper

conditions for extremum Y(P) are:

Sé(P) SG(P) -r
5p(F) T 5,y -7 - Y(P) (15)
and sg(P) < S;,(P) Y(P).

3 1 = - n = Q! 1 = -
However, since SG(P) QG(P) r, SG(P) QG(P)’ SF(P) QF(P) r and
S;(P) = Q%(P), we obtain that the first order condition and the proper second
order condition for extremum of Y(P) given by (15) are identical to the
conditions given by (13). a similar line of reasoning holds for the case of
Pt

TSDR: all one has to do is to define § (P) -r =/ [q(z) - r]dzdt ang

Pt G oo ¢
SF(P) ~r={{ [QF(Z) - r]dzdt, and to follow the same arguments used in

00

proving 3a.

IV. SDR Criteria for Specific Continuous Distributions

In this section we apply the criterig developed in the previous section
to some classes of continucus distributions of economic interest. We begin by
illustrating the case of the location-scale family of distributions where &(P)
does not have an internal extremum and hence isg checked only on the borders of
the appropriate ranges. Then we proceed to illustrate the case of the log

normal distribution, a case where internal extremum points exist.
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a) Tocation-scale family of distribution

Define X as X =oatBZ where w<g<w, B>0 ang Z is a
o LB a,B

random variable. The set {Xa B} is defined as & location-scale family with respect

3

to variable Z. Example of such families are: normal distributions, symmetric
stable distributions and uniform distributions.h Obviously, also the set {F&}
which consists of combinations between‘ F and a riskless asset is a location-
scale family with respect to the generating distribution function F. Let KF
and XG- belong to thersame locaticn-scale family with respect to Z, i.e.
X=a+bZ and Y = ¢ + 37 (we delete the subscripts F and G where no

confusion can arise). By definition, the P order quantile of X and y is

also a linear function of the P order quantile of Z, namely,

e + 42{P) - r

X(p) = a+D2(P) and Y(P) = ¢ + az(P). In this case §(p) = a + bZ(P) ~x

According to (10'), if there is an internal extremum for &(P), then at this

roint we have

C+dZ(?) -r _ (c+ az(p) -r)
a + bZ(P) ~ (a + ba(p) - ) (16)

|
]

which is reduced to

¢ + dZ{P) - r az'(p) _ a4 (17)
a + bZ(P) - r bZ' (P) b

Equation (17) can be rewritten as
p = dlacr) - (18)

c-r
Thus, if equation(17) holds, it must hold for every P (since Z(P) disappears
from (8)). However, (17) holds only if the parameters a, b, ¢, @ and r ful-

fill equation (18). However, if (18) holds, 6(P} is constant for all P and

4. Discussion of the location-scale family of distributions can be found in
Ali [2] and Bawa [ L ].
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is equal to 4/b for every p. Thus, if (18) holds, we can say that in this
specific case that X and Y are 1dentical in FSDR sense. In other words,
for each combination of Y gnd r there is some combination of X ang r
which creates identical distribution; and’ vice versa.

Iet us turn to analyze the more interesting case where (18) does not holid.
In this case there is no internal extremum and hence 6(p) 1is either
increasing or monotonic decreasing function with cne discontinuity point
as the denominator of 6(p} approaches zero. Namely, the discontinuity
point is at the value P for which a + b%(P) - r = 0.. Thus, in order to
check if the FSDR cea&ition holds, we hawe to cheek 8(P) only at the borders
of the proper intervals, [0, F(r)) ang (F(r), 1] (see eq. 1). Tt is clear
that if the numerator of §{P) becomes positive before the denominator
becomes positive, then §(P) approaches —o below F(r) and approaches +w
above F(r) and there is no dominance by FSDR. That is, a necessary condition
for the dominance of F over & by FSDR. is that the denominator of
§(P) becomes positive before the numerator, which is identical to the condition
F(r) < G(r). If this condition holds in the case where F and & belong to
the same location-scale distribution, then we can safely claim that 6&{(P) is
increasing monotonically up to infinity as P increases from zero to F(r),
and increases monotonically from minus infinity as p increases from F(r) to
1. Therefore, in this case in order to determine if FSDR exists we have to
check whether the necessary condition F(r) < G{r) holds and in sddition if
6(0) > 68{(1). Note that since 8(P) is monotonic, it suffices to calculate only
6(0) and 6(1). These two conditions are stated formally in the following

theorem:
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Theorem 4
let F and G belong to the same location-scale family of distribution.
Then F dominates G by FSDR if and only if:5

F(r) < G(r)

and (19)
§(0) > &(1)

We have already shwon that F(r) < G(r) is a necessary condition for
dominance. Also, if F(r) < G{r) and &(0) >8(1), eq. (1) holds which implies
dominance by FSDR. If 6(0) < 6(1), eq. (1) does not hold and F does not
dominate G by FSIDR.

Condition F(r) < G(r) given in (19) can be rewritten as
PrF(X <r) f_PrG(Y <r). However since X=ga+bZ and Y = ¢ + dZ, the last
inequality implies,

Pr (a + b7 <r) S-Pr (e + dZ < r} or

F G
P (2<¥®) < p (z<I=Sy
rF b rG d
But the last inequality holds if and only if r;a <55 or a;r > C("i'r. Thus ,

condition F(r) < G(r) given in (19) is equivalent to condition (20)

a-r Cc=T ( 20 )

o a
Having the parameters a, b, ¢, d and the riskless interest rate r, one
can easily check if (20) holds, regardless of the shape of the distribution of
Z. However, in order to check if §(0) > 8{(1) we should have information on
the distribution of Z. Let's illustrate condition {19) for two important

distributions which belong to a location scale family.

5. Theorem (4) holds for a broader class than the location-ccale family. This
theorem holds also if X = a + bH(Z(P) and Y = ¢ + aH(Z(P)) where H
is some monotonic increasing function.
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Normal distribution

First recall that 7 ~N{0,1). Thus,

=
1l

E{a + b7)

it
o

a2 and U(Xﬁ)

E(c + 47%)

i
j="]

e

Y
c and of G)

The necessary conditign F(z) < G(r) for dominance of F over G given
by eq. (20) can be rewritten simply as,

E -r E -r

XF X
o Z Gd (207)
F G
Let us examine 6&(P) in the normal case. 8§(P) can be rewritten as
4+ (e-r)
5(p) = Z(P) (21)
b o+ B
Z(P}

As indicated by (19) we have to examine &(P) only at P =0 and P = 1.
However, at these twe values Z(P) 1is equal to - and +ew , respectively,
and hence 6(0) = §(1) = d/b. Since §(0) = 6(1), the sole condition for
dominance of F over G by FSDR in the normal case is given by (20'). How-
ever, this condition is well-known, and simply assert that the market line of
¥ is above the market line of G. It is easy to verify that in the normal
case condition (20') (or the condition F(r)< G(r)) is also a necessary and

sufficient condition for dominance by SSDR.6

Uniform distribution

Let Z~U(0,1). Thus, Z(0) =0 and 2Z(1) = 1. fThe necessary condition

F(r) < G{r) or its formulation given by (20} must also hold in this case, since

6. The condition F(r) < G(r) and its equivalency to (20') for normal distribu-
tions has been discussed in Levy and Kroll [9 ].
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the uniform distributions belong to the location-scale family of distributions.

Let us examine the second condition for dominance of F over G. Recalling that

+d - r
= 1) = = &L *————.
Z0) =0 and Z1) =1 we have, &(0) -5 and §(1) = TR Thus F

dominates G if in addition to condition {20)(or (20')) &(0) > 8(1). We
preclude cases where the distribution of the random variable is either compiletely
to the right of r ({a case where no one will mix the risky asset with r) or
completely left to r (a case where no one would invest in the risky asset),
and hence each distribution should start to the left of. r and ends to the

T

right of r.  The requirement &(0) > 8(1) is then equal to,

c—-r N ctd - r
a-r atb - r

(22)
Since a 1is the point when distribution F starts (F(a) = 0) and a+b s
the point where F ends (F(a+b) = 1), we know from the abave explanation that
a -r <0 and a+b-r > 0. Thus (22) can be rewritten as

(c-r){a+b-r) < (e+d-r)(a-r) (221)
It can be easily shown that (22') holds if angd only if (20} holds. Namely, if
F(r) < 6{r), +then also 6(0) > §{(1), and hence F(r) <G(r) is a necessary and
sufficient condition for dominance of F over G by FSDR (as well as by SSDR).

To sum up, the condition F(r) < G(r) is a necessary condition for

dominance for location-scale family of distributions, and it is necessary and
sufficient condition for the normal and uniform distributions. For these
distributions, dominance by FSDR or SSDR transforms into the well Mmown
rule which asserts that the market line of the dominated portfeolio is lower.
Thus, in this specific case we have a separation by FSDR and SSDR, since only

one risky portfolio with the highest market line is included in the efficient set.

7. For the elimination of these trivial cases, see Levy & Kroll [10].
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b. Lognormal distributicns

We have shown above that for the location scale ‘family of distributions, there
is no internal extremum of 6(P). Now we turn to the lognormal distribution where
internal extremum may exist. The lognormal distribution has = specific importance
in economics. There are theoretical as well as empirical studies which claim
that the distribution of rate of return on securities is well fitted by the lognormal
distribu.tion.8 We first demonstrate how one can use the rules develcped in
Section III in order to establish FSDR in the lognormal case and then proceed
in developing SSDR for lognormal distributions. Before we turn to the theorems
we would like to mention that Levy & Kroll [ 9 ] dealt with the FSDR and lognormal

distribution in a different, and "perhaps more complicated, framework.

Theorem k4

let F and G be two-parameter lognormal distributions of the risky
options and r the riskless interest rate. Then F dominates G by FSDR
if and only if

(a) F(r) < G(r)
(23)

when 02 stands for the variance of log X, where X is the rate of return.

Proof

Iet g and W_, O be the mean and variance of log X under distribu-

FUF G° G

tion F and G respectively, X is the rate of return and r the riskless
interest rate. The P quantile of the lognormal distribution is given by

Q,A( P} wvhere

+Z (Plo
e e (24)

8. See Lintner [12] and Merton [1k].
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ZN(P) being the P quantile of the standardized normal distribution (see

Aitchison and Brown [1] and ILevy [E}]). Thus,

u+ZN(P)

Qu(P) = e Zy(Plo = 21 (P)oq (P) (25)

Using Theorem 3a, at extremum points P¥*, we have,
%
0,Q, (P¥)

G *
5.0, (Fey = 8B (26)

r
In general the left hand side of (26) which we denote by S(P) can be rewritten

as
P o e+ Z(P)(o, - o)
_ TN _ % MgMet gy ¢~ %%

s(p) = w)— = E;' e (27)

"y

Taking the derivative of (27) we obtain,

- + 2 (P)(o, - o)
35(P) _ .. Mp ~ Wt Gy ¢~ °F
op - Ly(PMog - aple (28)
as(p) . . ) . . )
Thus, 5D is negative (which implies that 5(P} decreases as P increases
if and only if Op > O'G.9

Thus, if indeed there are internal extremum points, from the fact that
S(P) 1is decreasing with P, we can conclude from {26) that &(P*¥) in the range
0 < P < F{r) must be greater than 6(P**) in the range F(r) < P < 1, when
P* and P** are the values appropriate to the two extremum points. We shall
see by means Figure 1 that if we add the conditi‘on F(r) < G(r) (as required
by the theorem) then indeed there is an internal minimum in the range

0 < P < F(r) and internal maximum in the range TF(r) < P < 1. Thus the condition

9. In the case 9 = O § (P*) is constant for all P's {see (27)), and in

this case it is trivial that F dominates @ by FSDR if F(r) < G(r).

(See Figure 2 and the appropriate discussion, below).
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9p < OG guarantess that the minimum in the first range is greater than the maximum

in the second range which implies further that F dominates G by FSDR.

Insert Figure 1

Figure 1 demonstrates a case where F(r) < G(r) and Op > 0 Recall that

>g.,, then G

two lognormal distributions intersect at most once and that if Op G

must cross F from below as shown in this figure.lO From the definition of §(P),
it is obvious that &(0) = 6(P) = 1, and that O < §(P) < 1 for every P in

the range 0 <P <P. For P <P < F(r}, &(P) increases with P and approaches
infinity as P approaches F(r). Thus, &(P) must have a global internal
minimum below F(r). Similar arguments lead to the conclusion that §(P) has

ar internal maximum above F(r). Thus, from these properties, and the fact

that S(P) is decreesing with P, (see (26)), we can conclude that the minimum
is greater than the maximum and hence F dominates G by FSDR. It is simple

or

to shov by way of the same arguments that if F(r) > 6(r), and o_ >¢

F G?

if F(r) < G{r) and o_ < g there is no FSDR.

F G’

Insert Figure 2

Figure 2 summarizes the situation where F(r) < G{r) and 0p 2 05-
In this case F dominates G by FSDR. The function S(P) decreases with P,
and crosses 6(P) at the minimum angd maximum points A and B respectively,

where A 1is above B. Note that if 0. = ¢ then S(P) is horizontal with

F G?
a tangency point at A and B, i.e. G(PI) = G(Pg). However, this condition
is also sufficient for dominance of F over G by FSDR (see (1)}).
Let us turn to SSDR rules in case of lognormal distributions.
Theorem 5

let F and G and r be as in Theorem 4. Then F dominates G by

SBDR, if and only if:

10. For further details of the properties of lognormal distributions, see
Aitchison and Brown [1].
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(a) F dominates G by SSD
or

(b) op 20, and P <P where P, and P, are the values which respectively

solve equations (28) and (29):

o

0
f Exp[uF+ZN(P)ch]dP = TP, (28)
0
Py
I Explu, + 2 (P)o,]JdP = rP (29)
. ot 'Piog 1

Proof
Sufficiency. Since in general SSD implies SSDR (see Levy & Kroll [10]) it

1s obvious that condition (a) is sufficient for SSDR. Thus, we have to prove

that if there is no SSD then there is SSDR of F over G if and only if

Op 2 0, and P0 < Pl. irf Op 2 04 and F(r) < G(r), F dominates G by FSDR

(see Theorem 4). Since FSDR implies SSDR, what is left to prove is that F

P < P, and F(r) > &(r). This

dominates G by SSDR in the case Up _>UG, 0 1

specific situation is depicted in Figure 3. Once again recall that

Insert Figure 3

Op > 9 implies that G crosses F from below and that there is only one inter-

section point. We use this figure to show that Y{(P) has an internal global
minimum below P0 and a global internal maximum above PO’ and that the
global minimum is above the global maximum, which implies by (2) that F
dominates G by SSDR.

Iet us first examine the behavior of Y(P) in the range 0 < P < Py

First note that Y(0Q) = E§-= l.ll It is obvious from the definition of Y(P)

and from figure 3 that as P increases Y(P) starts to decline since it is

below 1. However, when P approaches P then the denominator of Y(P)

0’

11. Use L'hoptal rule to obtain this result.
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gpproaches zero from below, but since PO < Pl (see Figure 3), the numerator of
Y(P) 1is still negative and hence Y(P) approaches +°, Thus, in the range

0<P<pP Y(P) starts from 1, falls below 1, and at P_ approaches

0’ 0

+°, which implies that in this range Y(P) has an internal minimum. Similar

arguments lead to the conclusion that in the range P. < P < 1, Y(P) has an

0]
internal meximum. Thus, in order to prove the sufficiency, what is left to

show is that the minimum is greater than the maximum. Denote by P¥ and Pp**

the points corresponding to the minimum and maximum of 8(P), respectively,

where P* < P**_  According to the first order conditions given in theerem 3k, at
these extremum points we have Y(P) = §{P). Therefore, instead of proving

that Y(P**) < Y(P*}, it is enough to prove that S(P*%) < 5(p*),

We shall show that both P* -and P**¥ are in the range where &(P) is
continuous and decreasing. If we succeed in demonstrating this, we complete the proof
since P¥ < P*%, and at the extremum points Y(P)} = 6(P)  (see Theorem 3b). Thus ,
the minimum is greater than the maximum (since &(P) is declining) and F
dominates G by SSDR (see eq. (2)). Ilet us begin by showing that indeed
P¥ and P*¥* are in the range where &(P) _ is decreésing.

We proved that Y(P) has a global minimum in the range [0, PO). However,
at the point P = F(r), Y(P) is still deelining, since its denominator which
is negative has zero change in the neighborhood of F(r) (since
QF(P) - r =0 at the point P = F(r) , but at this point QG(P) -r >0

see Figure 3). Hence the numerator of Y(P) becomes less negative. Thus,
Y(P) must decline in the neighborhood of F(r) and the value corres-
ponding to the minimum value of &(P) must fulfill P* > P({r).
Since P** > P¥, and since P = F(r) is the only discontinuity point of

§(P), both P* and P* are located in the range P > F(r) when 6(P) is
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continuous. However, it is easy to verify from Figure 3 that in the range

P > F(r), &(P) is decreasing with P. This completes the proof.12

Insert Figure L

Figure 4, which is plotted by a computer summarizes the case when F
dominates G by SSDR with two lognormal distributions. As can be seen, §&(P)
is decreasing and continuous in the range TF(r) < P < 1, and Y(P®) > Y(P*#*);
this implies SSDR.

Necessity. So far we have completed the sufficiency part of the thecrem.

The necessity part is straightforward: PO < Pl is a necessary condition for

dominance by SSDR for all distributions (see Levy & Kroll [10]) and it is also
neccssary condition in the specific case of lognormal distributions. If

Op < 0, @and there is no SSD of F over G, then EG(X) > EF(X) must hold

(because o_<o¢,, and E_(X) >E (X) is equivalent to SSD with lognormal
F G F G

distributions, see Levy [8]). However, SSDR of F over G, izplies that there
is some a such that Fa dominates G by SSD. But if EG(X) > EF(X), for

all a <1 we always have EG > Eq
o

cannot dominate G by SSD, since a necessary condition for dominance by SS8D

since EG(X) > EF(X) >r. Thus, F;

is that Egi(X) 3;EG(X). For a > 1 we also cannot find F, vhich dominates G
o

by 58D, since both F and G start from zero, and hence the left tail of F

is above G (see Figure 1).

V. The Lognormal efficient set frontier

Levy [8] and Levy & Kroll [9)] established the SSD and FSDR efficient
frontiers in the p-0 space for the case of lognormal distributions. Here
we extend their work by identifying also the SSDR efficient frontier. The

dashed area in Figure 5 presents the feasbile set in terms of the mean and

12. We proved by cumbersome algebra that §(P) is decreasing in this range.

However, since O > o, Wwe must have the lognormal distributions as drawn

in Figure 3, we decided to omit the mathematical proof, and to rely on
the simple graphical devise.
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variance of log-returns (see Levy & Kroll [ 9]). Levy [ 8] prove that the
segment BD 1is the SSD efficient frontier, and Levy & Kroll [ 9] proved that
CD is the FSDR efficient frontier. It is obvious that the SSDR efficient
frontier must lie within segment CD, since the SSDR efficient set is a subset of
FSDR efficient set. Below we shall analyze which part of CD is SSDR efficient.

let PO be the solution of (30)

P

0 .
§oEeMtoEte g s (30)
0

Note that the quantile of a lognormal distribution Q. (P) is given by
. A

u+Z (P)o

= £

a, ()

Since on the efficient set a change in ¢ causes a change in u we write u{o)

rather than u in (30), emphasizing that p is an impiicit function of the

portfeoiio's 0.13

Equation (30) can be rewritten as

0 u{o) + ZN(t)U
e

dt = rPO =7 (31)

O

According to Theorem 5, on the efficient set curve as we increase o, PO which

solves (30) or (31) must increase as well (otherwise we have dominance by SSDR).

However, since r is constant, P which solves (30) increases as one

. . . 3 . : .
increases o if and only if 35 is negative (see (31)). 1In other words if
g§-< 0, one must increases PO in order to satisfy (30), which means that

¢ and P increase together, a property which identifies the efficient set. (see

Theorem 5). Thus, on the efficient set, we have

13. We use a very similar technigue to the one employed by Baumol [3] in
identifying the efficient frontier.
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() oH(0) * 2(t)ag,,
b T

Y < 0 (32)

which can be rewritten as

Fo
BJ' ep(0)+Z(t)odt
0 .

u(c)+z(t)c[ah(c) +

o z(t)]dt < 0

3o €

I
Oh\o"d

Therefore, on the SSDE efficient segment of the frontier the following holds,

- Jatwy el

0 .« du(o)
?Oewz(t)%t > 2 (33)
or 0 P
su(e) _ ~ {O (tyet*altlog,
3o - {see eq. 30)) (34)

Inequality (34) provides a condition to examine whether we are on the efficient
or inefficient SSDR set. One should calculate the right hand side of (3%), and
eliminate the segment of the frontier where 3;(0 is greater than this value.
Thus, we relegate to the inefficient SSDR set, a segment like CE (see Figure 5)
when the slope is higher than a given value obtained from the right hand side

of (34).

V. Concluding Remarks

Stochastic dominance decision rules with the allowance for borrowing and lend-
ing at a riskless interest rate have been developed only in recent years.
These rules hold for empirical distributions (with a cumulative step-function)
as well as for any theoretical distributions with a continuous cumulative

distributions. However, though these rules always hold, one can not apply them
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for distribution with continuous cumulative distributions, since it involved an
infinite number of comparisons,

In this paper we developed the stochastic dominance rules with a riskless
asset in such a way that, in principle, one can apply these rules to any
theoretical distribution. We demonstrated the application of these new rules
to uniform, normel and lognormal distributions. In addition to the possibility
of such applications, which is impossible to apply without the rules developed
in this paper, the stochastie dominance rules in the continuous framework,
yields, in some cases, stochastic dominance criteria which are stated simply
in terms of the distributions parameters (e.g., mean, variance, ete.),

However, for some distributions the decision rules may be still complicated,
even if one uses the continuous framework.

Finally, we used the riyles developed in'this paper to investigate the
mean-varlance risk-averters efficient frontier when the distributions are

assumed to be lognormal,



Appendix . SDR rules for step-function cumuiative distributions

In this appendix, we show that in the case of discrete distributions,
the dominance conditions FSDR, SSDR, and TSDR can be greatly simplified since we
do not have to.trace the guantiles at every P, . but only the quantiles at the
upper or lower end of each step. A step is defined as a range of P where the
quantiles of ¥ and G are both constants. Thus, according to this definition
the expression (QG(P) - r)/(QF(P) -r) is a constant.in each step. Therefore,
in employing FSDR criterion (see equation (1)) only one computation for each step
is needed.

SSDR - Since we are locking for eitherfSUP or INF, we have to prove that
P P .
Y(P) = fla,(t) - rlat/f[Qg(t) -~ rlat (4-1)
0 0

is either monotonie non-inereasing or monotonic non-decreasing within each step.

Given that the above claim is correct, and considering the fact that Y(P) is continuous
at a1l pointa;'we are Justified in examining the quantiles only at one end of each step.
Let us loock at a specific step i. Denote with Ei and ?i the lower and upper

borders of this step. The quantiles in the i step will be denoted by QF(i)

and QG(i). Let us further denote:

P
J [Qu(P) ~rlap = s (A-2)
P
Z
J laz(p) -~ rlap = 1 (a-3)
then Y(E;) = b/a (A-k)

1. There is, of course, one discontinuity point P =-Pb where the denominator

of (A-1) is zero. A discussion on this issue will be done at the end of
this Appendix.



For every P in the range (Ei’ ?&) we have:

P

b+ [ [Qu(1) - rlat
P b+ (P-P.)(QG(i) - r)

= = (a-5)

[ap(1) = rlat & * (P~ B )Qp(d) - 1)

-1

N

a +

dh—g

differentiating with respect to P:

ar(e) _ GMorle + (P2 )(@y(1)r)] - [6 + (PR, )(q(1)-0) (ay(1)-r)
ar

. 2
[a + (P-P, }(Q(1) - r)]
After certain reductions we have: '

ar(p) _ a(QG(i)—r) - b(QF(i)—r)

ar la + (P-p ) (Q (I)=r) T2

(a-6)

The numerator of (A-6) is independent of P, and hence does not change signs within
a step. Thus,the whole expression is either non-decreasing or non-increasing
within the step, and hence it is enough to examine Y(P} at the ends of each

quantile, and there is no need to calculate Y(P) for each P within the quantile.

TSDR: We have to prove that in the case of discrete distribution functions the

expression:

u(P)

HI
Or— g
Q =+

- . Py
[Q,(2)-rldzat/f [[Q_(z)-rldzat (A-7)
"q_z r -4 é é QF z z

is either monotonic non-increasing or monotonic non-decreasing within each step 1.

Denote as before by P, ang ?i, the lower and upper bounds of the i-th step. Let,
1

[QF(Z)-r]dzdt = g (A-8)

C)Hl_l_*d
Q Sy ot

and

O‘-—\'_l"d
O o

[QG(Z)-r]dzdt =} (A-9)

thus p(fi) = b/a and for every f& <P < Pi' By definition,



A-3

u(P) = b +

1=
gt

o

Pt
[Q;(1)-rlazat]/[a + 1{.%_ [Qp(1)-rlazat (A-10)

11

Because QG(i) and QF(i) are both constant within the step, we obtain,

B(B) = v% 4 [Q(1)r)(3® - 2 P))/La* + [0p(1)-r](E 2 - p.)] (A-11)

where a¥ and b¥ are independent of P and defined by the following expression:

b* = b + -Jé'-gi(QG(i) - ) (A-12)
a*=a+%§@ﬁﬂ-r) | (A-13)

Differentiating u(P)

au(p) _ (G- (P-E)[e* + (1)) (3 P - p.7) -
dp

(a% + [Qp(1)-r](z P2 - p,P))?

- [o* + (gli)-r) (5 2% - B R I(Q (1)-x)(P-E,)

, 1l_2 2
* 4 - i -
(a* + [Qp(1) r}(Z P - E.F))
. 2
After gppropriate reductions in the numerator and denoting the denominator by B we have:

au{p) _ (P—Ei)[&*(QG(i)—r) —-»b*(QF(i)__r)]

ap) - 2 (a-14)

and since P > P, the sign of (A-14) is independent of P within the step i.

Finally, note that Y{(P) and u(P) are not defined at the points P, and

0
Pl, where Po and Pl are the solutions to the equations:

P

0

J [qp(z)-r]at = o (a-15)
0
Plt

J I lag(z)-r]azat = o (A-16)
00

Dencte by P(') and P]'_ the solutions to the equations:

'



PI
0
J [qy(t)-rlat = o (A-17)
0
Pt
1 t
Il j[QG(z)-r]dzdt = Q (A-18)
0 0
I1f P(') < PO’ then F cannot dominate G by SSD, since in such a case when P
approaches P, from below, Y(P) approaches -= =and condition (2) of

Theorem?2. cannot hold. Similarly, Pi > Pl is a necessary condition for TSIR.

Thus, F(r) < G(r), PO f_P(') and P

SSDR and TSDR respectively. The implication of these results in the case of

< P_{ are necessary conditions for FSDR,

discrete distributions is that in addition to the necessary computation at the

end of each step we first must confirm that these necessary conditions hold. It

—

must be further mentioned that if P0 and P(') are in the same step (say i%)
then if one fails to check this necessary condition, he can reach s mislieading

conclusion. Such a situation is illustrated in Figure A-1, in whiech Pé and PO

are in the same step. The lower bound of this step is P and the upper bound

is P. P(!J <P0 and hence y(P) »>-= gas P becomes closer to PO from the

left. So condition (2) of Theorem It "does not hold eand there is no SSDR of F

over G. However, if one checks +(P) only at the end points P and

Py he can mistakenly conclude that there is 8SDR, because y(P) > y(P).

Figure A-1
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