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Abstract

Most analyses of the principal-agent problem assume that the principal chooses
an incentive scheme to maximize expected utility subject to the agent's utility
being at a stationary point. An important paper of Mirrlees has shown that this
approach is generally invalid. We present an alternative procedure. If the
agent's utility function is separable in action and reward, we show that the op-
timal way of implementing an action by the agent can be found.by solving a convex
programming problem. We use this to characterize the optimal incentive scheme

and to analyze the determinants of the seriousness of an incentive problem.
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1. Introduction

It has been recognized for some time that, in the presence of moral hazard,
market allocations under uncertainty will not be unconstrained FPareto optimal
(cee Arrovw [1971], Pauly [19681). It is only relatively recently, however, that
economists have begun to undertake a systematic analysis of the properties of
the second-best allocations which will arise under these conditions. Much of
this analysis has been concerned with what has become known as the principal-
agent problem. Consider two individuals who operate in an uncertain environment
and for whom risk sharing is desirable. Suppose that one of the individuals
(known as ‘the agent) is to take an action which the other individual (known as
the principal) cannot observe. Assume that this action affects the total amount
of consumption Or MONEy which is available to be divided between the two indivi-
duals. In general, the action which is optimal for the agent will depend on the
extent of risk sharing between the principal and the agent. The question is:i

What is the optimal degree of risk sharing, given this dependence?
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Particular applications of the principal-agent problem have been made to the
case of an insurer who cannot observe the level of care taken by the person being
insured; to the case of an insurer who cannot observe the extent of the loss in-
curred by the person being insured; and to the case of an owner of a firm who
cannot observe the effort level of a manager oOT worker.l

Most of the mathematical analyses of the principal-agent problem proceed by
assuming that the principal chooses the risk-sharing contract, OT incentive sheme,
to maximize his expected utility subject to the constraints that (a) the agent's
expected utility is no lower than some pre-specified level; (b) the agent's util-
ity is at a stationary point; i.e., the agent satisfies his first-order conditions
with respect to the choice of action. However, in an important paper, Mirrlees
[1975] has shown that this procedure 1s generally jnvalid unless, at the optimum,
the solution to the agent's maximum problem is unique. In the absence of unique-
ness (and it is difficult to guarantee uniqueness in advance), the first-order
conditions derived by the above procedure are not even necessary conditions for
the optimality of the risk-sharing contract.

The purpose of this paper is to develop a method for analyzing the principal
agent problem which avoids the difficulties of the "first-order condition™ approach.
Qur approach is to break the principal's problem up into a computation of the costs
and benefits of the different actions taken by the agent. For each action, we
consider the incentive scheme which minimizes the (expected) cost of getting the
agent to choose that action. We show that, under the assumption that the agent's
utility function is additively or multiplicatively separable in action and re-
ward, this cost minimization problem is a fairly straightforward convex program-
ming problem. An analysis of these convex problems yields a number of results
about the form of the optimal incentive scheme. We will also be able to analyze

what factors determine how serious a particular incentive problem is; i.e., how



great the loss is to the principal from having to operate in a second-best sit-
uation where the agent's action cannot be observed relative to a first-best sit-
uation where it can be observed.

In addition to providing greater rigour, the costs vs. benefits approach
also provides a clear separation of the two distinct roles the agent's output
plays in the principal-agent problem. On the one hand, the agent's output con-
tributes positively to the principal’s consumption, so the principal desires a
high output. On the other hand, the agent's output is a signal to the principal
about the agent's level of effort. This informational role may be in conflict
with the consumption role. For example, there may be a moderate output level
which is achieved when the agent takes low effort levels and never occurs at other
effort levels. If the agent is penalized whenever this moderate output OCCUTS,
then he is discouraged from taking these low effort actions. However, there may
be lower output levels which have some chance of occurring regardless of the
agent's action. To encourage the agent to take high effort levels, it is then
optimal to pay the agent more in low output states than in moderate output states,
even though the principal prefers moderate output levels to low output levels.

The dual role of output makes it difficult to obtain conditions which en-
sure even elementary properties of the incentive scheme, such as monotonicity.
In Section 3, sufficient conditions for monotonicity are given. It 1is alsc shown
in this section that a monotone likelihood ratio conditionj which the "first-
order condition" approach suggests 1s a guarantee of monotonicity, must be streng-
thened once we take into account the possibility that the agent's action is not
unique at the optimal incentive scheme.

The paper is organized as follows. In Section 2, we show how the principal's
optimization problem can be decomposed into a costs vs. benefits problem. In Sec-

tion 3, we use our approach to analyze the monotonicity and progressivity of the



optimal incentive scheme. In Section 4, we give a simple algorithm for computing
an optimal incentive scheme when there are only two outcomes associated with the
agent's actions. Finally, Sectiom 5 analyzes the effects of risk aversion and

information quality on the incentive problem,

2. Statement of the Problem

The application of the principal-agent problem that we will consider is to
the case of the owner of a firm who delegates the running of the firm to a mana-
ger. The owner is the principal and the manager the agent. The owner is assumed
not to be able to monitor the manager's actions. The owner does, however, observe
the outcome of these actions, which we will take to be the firm's profit. It is
assumed that the firm's profit depends on the manager's actions, but also on other
factors which are outside the manager's control -- we model these as a random com-
ponent. Thus, in particular, if the firm does well, it will not generally be clear
to the owner whether this is because the manager has worked well or whether it is
because he has been 1ucky.-g

We will simplify matters by assuming that there are only finitely many pos-
sible gross profit levels for the firm, denoted ql,...,qn, where q1 < q, < aae
<q, We will assume that the principal is interested only in the firm's net
profit, i.e. gross profit minus the payment to the manager. We will also assume
that the principal is risk neutral -- our methods of analysis can, however, be
applied to the case where the principal is risk averse (see Remark 2).

Let A be the set of actions available to the manager. We will assume
that A is a compact subset of a finite dimensional Euclidean space. Let
s=1{xe Rnl x > 0, E X, = 1}. We assume that there is a continuous function
m: A + S, where w(:;l= (wl(a),...,vn(a)) gives the probabilities of the n

outcomes Gys--+>q, if action a 1is selected. It is assumed that, when the

.



agent chooses a € A, he knows the probability function 7 but not the outcome

which will result from his action. We assume that the agent has a von Neumann-
Morgenstern utility function U(a,I) which depends both on his action a and
Lic remuneration I from the principal. We include a as an argument in order
t¢ capture the idea that the agent dislikes working hard, taking care, etc.

The crucial simplifying assumption that we will make is that U(a,I) is

sdditively or multiplicatively separable in a and I.

{(Al) (Additive Separability) U(a,I) can be written as V(1) - G(a), where
(1) Vv 1is a real-valued, continuous, strictly increasing, concave function defined
on some interval L = (I,=) of the real line; (2) %i? V(I) = -=»; (3) G 1is a

ES

real-valued, continuous function defined on A.

-_—00

0

In the above, we allow for the case that T

(Al') (Multiplicative Separability) U(a,I) can be written as V(I)G(a), where
(A) V satisfies (1) and (2) above; (B) G is a strictly positive, real-valued,

continuous function defined on A.

An interesting special case of multiplicative separability is when V(I) =
-kI —k(I-
-e k , G(a) = eka and A is a subset of the real lime. Then U(a,I) = -e k(1 a);

i.e., effort appears just as negative income.

Tn the "first-best" situation where the principal can observe a, it is opti-
mal for him to pay the agent according to the action he chooses. Let U be the
agent's reservation price, i.e. the expected level of utility he can achieve by

working elsewhere. We assume

(A2) If (Al) (resp. (Al')) holds, U + G(a) (resp. T/6(a)) e V() for all

a g A.



Definition. Let C. .t A~ R be defined by CFB(a) = h(D + G(a)) in the case of

additive separability and by CFB(a) = h(G/G(a)) in the case of multiplicative

separability, where h = v, (Here CFB stands for first-best cost.)

Then to get the agent 6 piel a e A in the firct=best situatiom, the
principal will offer him the following contract: I will pay you CFB(a) if yoﬁ
choose a and 1 otherwise, where i is close to 1.

n
Definition: Let B: A+ R be defined by B(a) = ) m (a)q;. B(a) is the

i=1
expected benefit to the principal from getting the agent to pick a.

Definition: A first-best optimal action is ome which maximizes B(a) - CFB(a)
on A.
The function C induces a complete ordering on A. For obvious reasons

FB

we will refer to actions with higher CFB(a)‘s as costlier actions.

In the second-best situation where a 1is not observed by the principal, it
is not possible to make the agent's remuneration depend on a. Instead, the prin-
cipal will pay the agent according to the outcome of his action, i.e. according
to the firm's profit. An incentive scheme i{s therefore an n-dimensional vector
I-= (Il,IZ,...,In) £ ZP, where Ii is the agent's remuneration in the event that
the firm's profit is 9y Given the incentive scheme I, the agent will choose
ac A to maximize 'El ni(a)U(a,Ii).

We will assume tﬁat the principal knows the agent's utility function U(a,I),
the set A and the function w: A = 5. In other words, the principal is fully
informed about the agent and about the firm's production possibilities. The
incentive problem which we wiil study therefore arises entirely because the
3/

principal cannot monitor the agent's actions.=

The principal’s problem is to choose an incentive scheme I* and an action



a% so that (1) under I#, the agent L4111 be willing to work for the principal
and will Find it optimal to choose a* and (2) ] m; (@) (ay = 1) s maximized at
ax,Ix. It simplifies mattel considerably if we ;reak this problem up int0 WO
parts. We consider first, given that the principal wishes to implement a¥, the
least cost way of achieving this, We then conmsider which a* should be imple-
mented. Thus, to begin, suppose that the principal wishes the agent to pick a

particular action a* ¢ A. To find the least (expected) cost way of achieving

this, the principal must solve the following problem:

n
(2.1) Choose Il,...,In to minimize E wi(a*)li
i=1
n -
g.T. |} w.(a®)u(a*,1,) >V,
i=1 * T
n n
} ni(a*)U(a*,Ii) > ) n.(a)U(a,I.) for all a e A,
i=1 =1 * +

Ii e I for all 1.

This problem can be simplified considerably in view of (Al) and (A1'). It
will be convenient toO regard vy T V(Il),...,vn = V(In) as the principal's con-
trol variables. Let Y=v@) = {vl v = V(I) for some I e T}. By (Al) and
(A1"), Y is an interval of the real line (-»,v). Furthermore (A1) and (Al")
imply that the first constraint in (2.1) is binding -- for if not, costs can be
reduced and all constraints will still be satisfied if we replace v, by v, - €

under (Al) or by Vi(l_e) under (Al'), where € > 0 1is small. Hence (2.1) can

be rewritten as

(2.2) Choose vl,...,vn to minimize E wi(a*)h(vi)

n

S.T. izl ﬂi(a*)vi = V(CFB(a*))



n

izlﬂi(a)vi <V, (@) forall aed,
vi £ lf for all i ,

Juere h =V 7,

The important point to realize is that the constraints in (2.2) are linear
in the vi's. Furthermore, V concave = h convex, and so the objective func-
tion 1is convex in the vi's. Thus (2.2) is a rather simple optimization prob-
lem: minimize a convex function subject to (a possibly infinite number of)
linear constraints. In particular, when A is a finite set, the Kuhn-Tucker

theorem yields necessary and sufficient conditions for optimality. These will

be analyzed later.
It is important to realize that, in the absence of (Al) or (Al'), it is not

generally possible to convert (2.1) into a convex problem.

Definition: If I = (I,,...,I ) satisfies the constraints in (2.1) or v
e -~ 1 n ~
(vl,...,vn) satisfies the constraints in (2.2), we will say that I or v

implements action a*. (We are assuming here that if the agent is indifferent

between two actions, he will choose the one preferred by the principal.)

In order to establish the existence of a solution to (2.2), we need a fur-

ther assumption.
(A3) For all ae¢A and i=1,...,I, wi(a) >0 .

This assumption rules out cases studied by Mirrlees [1979] in which an optimum

can be approached but not achieved.

Lemma 1. Assume (Al) or (Al'), (A2) and (A3). Then, if the constraint set of
(2.2) is not empty for a* ¢ A, (2.2) has a solution. If V is strictly con-

cave, the solution is unique.



Proof. If V is linear, them all elements in the constraint set which satisfy

Iwi(a*)U(g*,Ii) = U have tho gcame eypeeted cost and <o 4 minimum certainly exists.

Assume therefore that V 1is not linear. Now Eﬂ,(a*)vi is bounded over the
1

constraint set. It therefore follows from a result of Bertsekas [1974] that un-—
bounded sequences in the constraint set make ZWi(a*)h(vi) unbounded (roughly
because the variance of the v, + =), Hence we can bound the-constraint set.
The existence of a minimum follows from Weierstrass' theorem.

Uniqueness follows from the fact that V strictly concave = h strictly
convex. Q.E.D.

n

Definition: Let C(a*) be the minimized value of 121 ﬂi(a*)h(vi) in (2.2)

if the constraint set is non-empty. In the case where the constraint set of

(2.2) is empty, write C(a*) = =, This defines the second-best cost function

C: A » RU{x}.

Remark 1. The above analysis is based on the assumption that the function V{I)
is unbounded below (see (Al)). In the absence of this assumption, it is no longer
the case that the constraint 2“1(3*)U(a*-1 ) z_ﬁ necessarily holds with equal-
ity at an optimum. This complicates matters slightly, but does not alter the

fact that (2.1) can be converted into a convex problem with linear constraints
along the lines of (2.2).

The above constitutes the first step(s) of the principal's optimization pro-
blem: for each a € A, compute C(a). The second step is to choose which action
to implement, i.e. to choose a e A to maximize B(a) - C(a). This second pro-
blem will not generally be a convex problem. This is because even if B(a) is
concave in a, C(a) will not generally be convex. As long as w(a),C(a) are
differentiable, however, the calculus will yield necessary conditions for opti-

mality in the second problem. These conditions can then be combined with the
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conditions for optimality in (2.2) to yield overall necessary conditions for op-
timality,

Definition: A second-best optimal action is one which maximizes B(a) - C(a)

on A. A second-best optimal incentive scheme is one that implements a second-

best optimal action at least expected cost.
Proposition 1 establishes the existence of a second-best optimum.

Proposition 1. Assume (A1) or (Al'), (A2) and (A3). Then C(a) 1is a lower

semicontinuous function of a, satisfying C(a*) = CFB(a*) if a* minimizes
CFB(a) on A. In particular, the problem 2@? (B(a)-C(a)) has a solution.
Proof: If A is finite, then any function defined on A 1is continuous. As-
sume therefore that A is not finite. Let (ar) be a sequence of points in
A converging to a. Assume without loss of generality (w.l.o.g.) that C(ar) -
k. Then, if k = =, we certainly have c(a) f_%i: C(ar). Suppose therefore
that k < «, Let (I;,...,Iz) be the cost minimizing way of implementing a_-
Then, if (A3) holds, the argument used in the proof of Lemma 1 shows that the
sequence ((Ii,...,IZ)) is bounded. Let (Il,...,In) be a limit point. Then
(Il,...,In) implements a and s0 c(a) f_‘z'rri(a)Ii = %32 C(ar). This proves
lower semicontinuity.

To prove that C(a*) = CFB(a*) if a* minimizes CFB(a) on A, note that
a* can be implemented by setting Ii = CFB(a*) for all i in this case; i.e.

there is is no trade-off between risk sharing and incentives when the action to

be implemented is a cost-minimizing one. Q.E.D.

Definition: Let L = max (B(a) - C_, (a)) - max (B(a) - C(a)) be the difference
—_— atA FB acA .
between the principal's expected profit in the first-best and second-best situa-

tions.
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I represents the loss which the principal incurs as a result of being un-
-"le to observe the agent's action. Proposition‘ﬁ shows that, while thete are

ne special cases in which L = 0, in general L > 0.

CFB(a) for

0. (3) 1f

Proposition 2. Assume (Al) or (Al'), and (A2). Then: (1) C(a)

| v

all a ¢ A, which implies that L > 0. (2) If V is linear, L
there exists a first-best optimal action a* ¢ A satisfying: for each i,
ni(a*) > 0= ﬂi(a) =0 for all ac A, a # a*, then L=0. (4) If A is a
finite set and there is a first-best optimal action a* which satisfies: for
some i, ni(a*) =0 and ﬂi(a) >0 for all aeg A, a # a*, then L = 0. (5)
If there is a first-best optimal action a* ¢ A which ninimizes CFB(a) on A,

L=20. (6) If (A3) holds, every maximizer a of B(a) - CFB(a) on A satisfies

(a) > mig_c B(a), and V is strictly concave, then L > O.
ag

Crp F

Proof: (1) is obvious since anything which is second-best feasible is also first-
best feasible. To prove (2), let a* maximize B(a) - CFB(a). Let the princi-
pal offer the agent the incentive scheme Ii =q - t, where t = B(a*) - CFB(a*)'
Then the principal's profit will be B{(a¥) - CFB(a*). On the other hand, by
picking a = a*, the agent can obtain expected utility U.

(5) follows from Proposition 1. (3) and (4) follow from the fact that a#*
can be implemented by offering the agent Ii = CFB(a*) for those 1 such that

wi(a*) >0 and I close to I otherwise.

To prove (6), note that, if V 1is strictly concave,
% *
In, @)V(1)) 2> V(Cr @@%))
implies

C(a*) =

18

m, (AR(V(I)) > h(V(Cpp(a®))) = Cppla®)

i=1
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unless Ii = constant with probability 1. But, since w,{a*) > 0 for all i,
1
Ii = constant with probability 1 = Ii is independent of 1. However, in this

case, the constraints of problem (2,2) imply that CFB(a) is minimized at a*.

Q.E.D.

Most of Proposition 2 is well known. Proposition 2(2) and (6) can be under-
stood as follows. In the first-best situation, if the agent is strictly risk
averse, the principal bears all the risk and the agent bears none. In the second
best situation, this is generally undesirable. For if the agent is completely
protected from risk, then he has no incentive to work hard; i.e., he will choose
a e A to minimize CFB(a). Hence the second-best situation is strictly worse
from a welfare point of view than the first-best situation. The exception is
when the agent is risk neutral, in which case it is optimal both from a risk
sharing and an incentive point of view for him to bear all the risk.

In the case of Proposition 2(4), a scheme in which the agent is penalized

very heavily if certain outcomes occur can be used to achieve the first best.

This relates to results obtained in Mirrlees [1979].

Remark 2. We have assumed that the principal is rdsk neutral. Our analysis
generalizes to the case where the primcipal is risk averse, however. Imn this
case, instead of choosing v to minimize Zﬂi(a*)h(vi) in problem (2.2), we
choose v to maximize Zwi(a*)Up(qi—h(vi)), where Up is the principal's util-
ity function. Note that (2.2) is still a convex problem. Although we can no
longer analyze costs and benefits separately, we can, for each a e A, define a

a net benefit function Mﬁx z ni(a*)Up(qi-h(vi)). An optimal action for the prin-

cipal is now one that maximizes net benefits.

Remark 3. We have taken the outcomes observed by the principal to be profit levels,
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Our analyeis penoralisss, howavaey, t0 the eate whete the outeOmas ara moYe compli-

cated objects, such as vectors of Profits, sales, etc, The important point to

r2alize is that output does not appear in the cost minimization problem (2.1)

we (2.2). Thus, if the principal observes the realizations of a signal é, then
1i refers to the payment to the agent when O = Oi. Let ((a,8) be the cost

of implementing a when the information structure is 6 {(e.g. if ® reveals a
exactly then a(a,é) = CFB(a))' Note that if the distribution of output is gene-
rated by a production function f(a,w), such that the marginal distribution of

w is independent of the information structure, then B(a) = Ef(a,&) =
E[E[f(a,%)[ @]] 1is independent of the information structure, given a. It fol-
lows that the effect of changes in the information structure is summarized by

the way that C(a,é) changes when the information structure changes. As will

be seen in Section 5, this is easy to analyze.

3. Some Characteristics of Optimal Incentive Schemes

It is of interest to know whether the optimal incentive scheme is monotone
increasing (i.e., whether the agent is paid more when a higher output is observed)
and whether the scheme is progressive (i.e., whether the marginal benefit to the
agent of increased output is decreasing in output). These questions are quite
difficult to answer because of the informational role of output. As we noted in
the introduction, the agent may be given a low income at intermediate levels of
output in order to discourage particular effort levels. Nevertheless, some general
results about the shape of optimal schemes can be established. We begin with the

following lemma.

Lemma 2. Assume (Al) or (Al'), (A2) and (A3). Let (Ii)2=1’(1i)$-1 be incen-

tive schemes which cause a and a' to be optimal choices for the agent  respec-
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tively, and minimize the respective costs (i.e. (2.1) or (2.2) is solved). Let

v, =V(I,) and v' = v(I'). Then
1 i & b

(3.1) E [r,(@") - m @)} -v) > 0 .

Proof: From (2.2),
g m@av, < V(C ) = ¥ T (a')v] and
g m @)V < V(C (a)) = ) (@), .

Adding these two inequalities yields (3.1). Q.E.D.

We now use Lemma 2 to show that an optimal incentive scheme will have the
property that the principal's and agent's returns are positively related over some
range of output levels; i.e., it is not optimal to have, for all output levels
qi,qj, Ii > Ij = q; - Ii < qj - Ij. The proof proceeds by showing that, if the
principal's and agent's payments are negatively related, then there is a twist in
the incentive schedule which raises the agent's payment in high return states for
the principal and lowers it in low return states for the principal, and which is
good for incentives since it gets the agent to put more probability weight on
states yielding the principal a high return. Such a twist is also desirable for
risk-sharing. Since the incentive and risk-sharing effects reinforce each other,
the principal is made better off.

In order to bring about both the incentive and risk-sharing effects, the

twist in the incentive scheme must be chosen carefully. It is for this reason

that the proof of the next proposition may seem rather complicated at first sight.

Proposition 3. Assume (Al) or (Al'), (A2), (A3) and V strictly concave. Let

(1 In) be a second-best optimal incentive stheme. Then the following cannot

IEREEY
be true: Ii > Ij = q; - Ii i_qj - Ij for all 1 <1i,j <n and-for some i?j .



Ii>Ij and qi—Iicqj-Ij.

Proof: Suppose that
(3.2) I, > 1, = q; - I, <gq, - l'j for all 1 < i,j <n and for some

i 3
- I -
i,j , Ii > Ij and qi i < qj I

]
Let (Ii,...,Ié) be a new incentive scheme satisfving

' 1y = _ .
(3.3) vy + lh(vi) 2 + Aqi u for all i

where vy V(Ii), vi = V(I;), A >0 and p is such that
(3.4) A M?x (q:,L - h(vi)) >u> A M%n (qi - h(vi))

0, then vi = v, solves (3.3). The implicit function theorem there-—

If X =1y
fore implies that (3.3) has a solution as long as A,y are small. (Even if h
is not differentiable it has left and right hand derivatives.)

It follows from (3.2) and (3.4) that the change to the new incentive scheme
has the effect of increasing the lowest Ii's and decreasing the highest ones.,
Pick u so that Jm (a')v] - V(C  (a")) = Max [Yn;(@)v] - V(Cpy(a))] = 0. This
ensures that the agent's expected utility remains at U. We now show that the
principal's expected profit is higher under the new incentive scheme than ynder
the old, which contradicts the optimality of (Il,...,In).

Substituting (3.1) of Lemma 2 into (3.3) yields:
R R
If we can show that ZHi(a)h(vi) < Zﬂi(a)h(vi), it will follow that
EFCOICHER ORI MCHICHER TR

i.e., the principal is better off.
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To see that Zvi(a)h(vi) < Zni(a)h(vi), note that
Im @®E) -heD) 2 [n @ e, - v))

by the convexity of h (here h' is the right-hand derivative if h is not dif-
ferentiable). It suffices therefore to show that the latter expression is posi-

tive. By (3.3),
) m @h' (v (v, - v = Zni(a)h'(vi)(lh(vi) iR CPRL DI

Suppose that this is nonpositive for small 2. Dividing by A, letting "X + O,
assuming that p/A converges to w.l.0.g., and using the fact that vi > Vi
we get

(3.5) L@ (v)v)-q +i) < 0

However, by (3.2), h'(vi) and (h(vi) - qi)) are positively correlated; i.e.,
a2s one moves up so does the other. Therefore, by Hardy, Littlewood and Polya

[1952, p.43],

(3.6) [my@h' ) v = ap + ) > (g @b ) (Jry (@ (av,) - q + i)

>0,

where the last inequality follows from the fact that (1) h' > 0; (2) Zni(a)vi -
— - s I3 . - ’ —_ 1
V(Cg(a)) < 0 Zni(a)vi V(€ p(2)), which implies that }1\33 (1/A)Z-ni(a) (v,-v)
> 0. (3.6) contradicts (3.5).
This proves that ZHi(a)h(vi) < Zwi(a)h(vi), which establishes that the

principal's expected profit is higher under .(I',...,I;). Contradiction,

Remark 4. There is an interesting contrast between Proposition 3 and results

found in the literature on optimal risk sharing in the absence of moral hazard.
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In this literature, it is shown that (if the individuals are risk averse) it is

optimal for the individuals' returns to be positively related over the whole range

of outputs, rather than over just some range of outputs. See Borch [1968].

Proposition 3 may be used to establish the following result about the mono-

tonicity of the optimal incentive scheme.

Proposition 4. Assume (Al) or (Al'), (A2), (A3) and V strictly concave. Let

(IL"°"In) be a second-best optimal incentive scheme. Then (1) there exists

1 <i<np-1 such that I, <1 , with strict inequality unless I, =1, = ... =
- = i-"i+1 1 2

In; (2) there exists 1 < j < n-1 such that q:,I - Ij < qj+1 - Ij+1'

Proof: (1) follows directly from Proposition 3. So does (2) once we rule out the

case qq - I = q, - I2 = ... =q - In. We do this by a similar argument teo that

1

used in Proposition 3, Suppose that 1 is an optimal incentive scheme satisfying

- -1, =q, -1 =...=q -1 =k .

(3.7) QW -hTaoh a, " 1

Then Il < 12 < ... < In. Consider a new incentive scheme I' = (Il+€, 12+€, aens
» 1 .

In_l+€, In—ue) where € > 0 and yu is chosen so that Max[Zwi(a)V(Ii) V(CFB(a))]

aceA

= 0. We show that the principal's expected profit is higher under I' than under

I for small €. Suppose not. Then

Imi@lq -1 < [n@-I) = k ,

where a' (resp. a) is optimal for the agent under 1' (resp. I). Substituting

for I' vyields
_ — 1 + ] .
(1 ﬂn(a ))E wn(a Jue < 0
Take limits as € > 0. W.l.o.g. a' > a. Hence we have

(3.8) -1 - wn(a)) + nn(a)u < 0 .
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Now since a' is an optimal action for the agent under 17, it follows by

uppersemicontinuity that 2 1is optimal under I. Hence we have
) T A _ ~ _ ~
[ n, @ - Veg@) < 0 = [ m @) - VCg@) .

Using the concavity of V and taking limits as € + 0, we get

n-1 R .

' - '

_Z T @V - T @VIADu < 0 .

i=1
But since V'(Ii) is decreasing in i, this contradicts (3.8). (If V is mnot
differentiable, V' denotes the right-hand derivative.)

This proves that the principal does better under I' than under I. Hence

we have ruled out the case -T.=...=gq = 1I. This establishes Proposition

ql 1 n n
4. Q.E.D.

Proposition 4 says that it is not optimal for the agent's marginal reward as
a function of income to be negative everywhere or to be greater than or equal to
one everywhere;il However, the proposition does allow for the possibility that
either of these conditions can hold over some interval. To see when this may occur,
it is useful to consider in more detail the case where A is a finite set. When
A is finite, we can use tﬁe Kuhn-Tucker conditions for problem (2.2) to charac-

terize the optimum. If (A3) holds and h is differentiable, these yield:

w,(a, )
(3.9) R'(v) = A - Loy —i?;§5 ,
keA Ty
ak¥a*

where A, (uk) are nonnegative Lagrange multipliers and ¥y > 0 only if the
agent is indifferent between a¥* and a, at the optimum. The following pro-
position states that By > 0 for at least one action which is less costly than
a*. This implies that at an optimum the agent must be indifferent between at

least two actions (unless a* 1is the least costly action, i.e. where there 1s
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no incentive problem),

Proposition 5. Assume (Al) or (Al'), (A2), (A3) and A finite. Suppose that (2.2)

has a solution for a* ¢ A. Then if C__(a*) > min C_,(a), this solution will
have the property that ZHi(a*)vi - V(CFB(a*)) = Ewi(ak)vi - V(CFB(ak)) for some

a . . . . .
K €A with CFB(ak) < CFB(a }. TFurthermore, if V is strictly concave and

differentiable, the Lagrange multiplier uk will be strictly positive for some
a with CFB(ak) < CEB(a*)q
Proof: Suppose that the agent strictly prefers a* to all actions less costly
than a* at the solution. Then, since (2.2) is a convex problem, we can drop
all the constraints in (2.2) which refer to less costly actions without affecting
the solution. In other words, we can substitute A' = {aeAIa is at least as
costly as a*} for A in (2.2) and the solution will not change. But since a¥
is now the least costly action, we know from the proof of Proposition 1 that it
is optimal to set Ii = Ij for all i,j. However, Ii = Ij is not optimal for
the original problem since, under these conditions, the agent will pick an a
which minimizes CFB(a), and by assumption CFB(a*) > giﬁ CFB(a). Contradiction.
That M > 0 follows from the fact that if all the My = 0, then h'(vi)
is the same for all i, which implies that I1 = L., = In; however, this means

that the agent will choose a cost-minimizing action, contradicting CFB(a*) >

min C aj). .E.D.
min Cpp(2) Q

The simplest case occurs when e > 0 for just one a; with CFB(ak) <
CFB(a*) (this will be true in particular if A contains only two actions). In
this case, we can rewrite (3.9) as

wi(ak)

(3.10) h'(Vi) R T
i

We see that what determines vi, and hence 1T in this case is the relative like-

i!
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lihood that the outcome ¢q = q; results from ak rather than a*. In particular,
since h convex :29 h' increasing in V.o a sufficient condition for the optimal

incentive scheme to be increasing everywhere, i.e. Il 5_12 < e 5_In, is that

ni(ak)/ni(a*) is decreasing in i, i.e. the relative likelihood that a = a,
rather than a = a* produces the outcome q = ¢, is lower the better is the out-
gome 1,

This observation has led some to suggest that the following is a sufficient

condition for the incentive scheme to be increasing.

Monotone Likelihood Ratio Condition (MLRC). Assume (A3). Then .MLRC holds if,

given a, a' £ A, CFB(a‘) i-CFB(a) implies that ﬁi(a')/ni(a) is decreasing in
. 5/
i.—

It should be noted that the "first-order condition” approach described in
the introduction, which is based on the assumption that the agent is indifferent
between a and a + da at an optimum, does yield MLRC as a suf ficient condi-
tion for monotonicity;gl We now show, however, that, once we take into account

the possibility that the agent may be indifferent between several actions at am

optimum, i.e. uk > 0 for more thanm one a MLRC does not guarantee monotoni-
city.

- - -2 1 1 - 1L
Example 1. A = {al, ays a3}. n = 3. w(al) = (3, 4 12), ﬂ(az) (3, 3 3

_ .11 2 . cqs
w(aB) = (12, 5 3). Assume additive separability with G(al)

%/7_/17, G(ay) = 1%/7/4, v = 6DY? dee. hv) = %«:3) and T = %J2'+1_2J7_/I

It

=1
0, G(az) = 12/5-+

Note that MLRC dis satisfied here.zj

3 . _ _1 =3
We compute C(al), Cla,), C(a3). Obviously, C(al) = CFB(al) = 3(G(al) + U)

= 0.033. To compute C(az), we use the first-order condifions (3.9)}. These are

) _
vi o= A= 2y ey
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2 - 3 - jv _ 3
Y2 A A R
2 _

plus the complementary slackness conditions. These equations are solved by set-

17 .
My T2 M, = 1. This yields v, = 0, v, = V2, vy = Y774, and the

agent is then indifferent between a;» a, and ayt

ting A =

2 1 1 1 1 1
- = + -
3V F 3V Y 12V~ O(a)) = Fvy 3y, vy - Gay)
1 1 2 =
=13 + 7'y + o G(a3) U .

Since the first-order conditions are necessary and sufficient, we may conclude

3 + lv3 + lv3) = 0.571.

11
that C(ay) = 3(3v; +3v, + 3V

1.3/2
Note that the incentive scheme which implements az, Il = 0, 12 =-§2 / s
I3 = %{%)3/2, is not monotonically increasing.

Observe that C(a3) Z_CFB(a3) = %{G(aB) + ﬁ)3 = 0.635 > C(az). Since 6(33)
> C(az) > C(al), it is easy to show that we can find 9y < q, < 4 such that
B(a,) - C(a,) > max [B(ay) - C(aj),B(a,)~- C(a;)]. But this means that it is
optimal for the principal to get the agent to pick ay Hence the optimal incen-
tive scheme is as described above. It is not increasing despite the satisfaction

of MLRC.

The reason that monotonicity breaks down in Example 1 is because, at the op-

timum, the agent is indifferent between a5, the action to be implemented, al a
my(a) Ty (ay)

a more costly action. By MLRC, s are
ﬂi(az) ni(a3)

less costly action, and ay
wi(al) wi(aB)

decreasing in 1i. However, My —r) + ¥y Ty need not be monotonic.
i 2 it2

This observation suggests that one way to get monotonicity is to strengthen

MLRC so that it holds for weighted combinations of actions as well as for the
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basic actions themselves. In particular, suppose that

of A, a £ A, and nonnegative

(3.11) Given any finite subset {al,...,an}
n
Eleﬂi(aj)/ni(aa

weights wl,...,wn summing to 1, it is the case that (

J
. . . L]
is either monotonically increasing or decreasing in 1.

Then, by the first-order conditioms (3.9,

(3.12) Wev) =a-f ) w ] wom (a)/m (a)} ,
1 kea EJl wea FEOKOE
* *
ak#a ak%a
where w,_ = uk/ Y ®.. But, by (3.11), the right-hand side (RHS) of (3.12) is
k heA h
5 #ak
ah#a
monotonic. Hence, the v,'s are either monotonically increasing or decreasing.

i

By Proposition 4, however, they cannot be monotonically decreasing; hence they

are monotonically increasing.

Unfortunately, (3.11) turmns out to be a very strong condition. 1In fact, it

is équivalent to the following spanning condition.

~ ~

Spanning Condition (SC). There exist T, 7' & S such that (1) for each a £ A,

w(a) = Afa)m + (1-3(a))n' for some O < i{a) < 1; (2) ﬁi/%i is monotonic in 1.

That SC implies (3.11) is easy to see. We are grateful to Jim Mirrlees

for pointing out and proving the converse.§

Proposition 6. Assume (Al) or (A1'), (A2), (A3), V strictly concave and differ-

entiable. Suppose that SC holds. Then a second-best optimal incentive scheme

satisfies Il_i I2

Proof: If A 1is finite, the argument following (3.12) establishes the result.

< 4.0 < I
- - n

To establish the result for the case A infinite, we approximate A by a finite
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subset and take limits (recall that A 1is compact). Q.E.D.

An alternative sufficient condition for monotonicity may be found in the
work of Mirrlees [1979], who establishes a similar result to Proposition 7 below.
For each a e A, let F(a) = (nl(a), wl(a) + nz(a), vee ﬂl(a) + ...+ nn(a)).
In the following proposition, the notation F(a) > F'(a) 1is used to mean Fi(a)

> Fi(a) for all i =1,...,n.

Concavity of Distribution Function Condition (CDFC). CDFC holds if a, a', a" €A

and _V(Cfnfﬂfiv(cwfi)u)_ + (-)V(Cg (™M), 01 < 1, dmplies that F(a)-2

AF(a') + (1-2)F(a").

Proposition 7. Assume (Al) or (Al'), (A2), (A3), V strictly concave and dif-

ferentiable. Suppose that MLRC and CDFC hold. Then a second-best optimal
incentive scheme (Il,...,In) satisfies Il I, .. <I-

Proof: Assume first that A is finite. Let a* maximize B(a) - C(a). Let
A' = {a ¢ AI CFB(a) 5‘CFB(a*)}' Consider the cost minimizing way of getting the
agent to pick a* given that he can choose only from A'. It is clear from
{(3.9) that, since ni(ak)/ni(a*) is decreasing in i by MLRC, the incentive
scheme (Il,...,In) is monotonically increasing. We will be home if we can
show that (Il,...,In) is optimal when A' 1is replaced by A. Since adding
actions cannot reduce the cost of implementing a%, all we have to do is to show

that (Il,...,In) continues to implement a*, i.e. there does not exist a'",

1" *
CFB(a ) > CFB(a ), such that
. i _ " = s - *
(3.13) L @Mv, - V(@) >0 I (a%)v, - V(Cpp(a®))
However, we know from Proposition 5 that

(3.14) ) m (@), - V(Cp(a')) = 0 = } T (ak)v, - V(Cpp(a®) .
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f r ] 2 ] g% . . 7
or some a' with CFB(a ) < CFB(a Y. Writing \(CFB(E))

AV(CFB(a')) +

(l-A)V(CFB(a")) and using CDFC and the fact that Vi SV, 2 e <V, we get

) m (@), - V(Cpp(a%) > 2 Do @iy, + (1-0)] my (@), - V(C,, (@)

= A(In @, - Ve @) + -2 (] 7 (av, - V(Cya")

which contradicts (3.13) and (3.14).

To prove the result for A infinite, one again proceeds by way of a finite

approximation. Q.E.D.

So far we have considered only the monotonicity of the optimal incentive
9
scheme.—/ One would also like to know when the optimal incentive scheme is pro-
gressive, i.e. (Ii+l - Ii)/(qi+1 - qi) is decreasing in i, or regressive, i.e.
(Ii+1 - Ii)/(qi+l - qi) is increasing in i. To get results about this, one

needs considerably stronger assumptions, as the following proposition indicates.

Proposition 8. Assume (Al) or (Al'), (A2), (A3), V strictly concave and dif-

ferentiable. Suppose that MLRC and CDFC hold and that is

(a441 ~ 9y
independent of i, 1 < i < n-1. Then a second-best optimal incentive scheme

will be regressive if

(3.15) (1/V'(1)) is concave in I and a, a' € A, C (a') < c_ (a),
FB FB

Ti1@") _ my(a’)
M@ my@)

implies that is decreasing In 1.

It will be progressive if

(3.16) (1/V'(I)) is convex in I and a, a' € A, CFB(a') < CFB(a)'

LARLCY n.(a')
implies that @ 1(3) is decreasing in 1i.
Ti+1 b




1
)

Proof: Assume first that A 1is finite. Let a* be a second-best optimal ac-
tion. ! imi i < % i,e, a' 1is the
ion. Let a' maximize CFB(a) subject to CFB(a) CFB(a ), i,e, a is

next most costly action after a%. Consider the cost minimizing way of imple-

menting a* given that a' is the only other action that the agent can choose.
Using the same concavity argument as in the proof of Proposition 7, we can show
that the resulting incentive scheme (Il,...,In) also implements a* when the

agent can choose from all of A. Hence (Il,...,In) is an optimal incentive

scheme.
By (3.10),
w, (a')
1 _ . i
vapy Co° (vi) = A-wTTEEy
and so
1 1
1 1 ~ u'“i+1(a ) " (a ))
Y - [ = - * = T (axY .
Vi) Vi) \T14p (@) wy @)
(3.15) and (3.16) now follow immediately. Q.E.D.
1 . . X -al
Note that v is linear if V = log I; 1s concave if V= -e , >0, or

V= Ia, 0<o<l; is convex if V = -I—a, a > 1.

Let us summarize the results of this section. We have shown that an optimal
incentive scheme will not be declining everywhere, but that only under quite strong
assumptions (SC or MLRC plus concavity) will it be increasing everywhere. We
have also shown that it is not optimal for the agent's marginal remuneration for
an extra pound of profit to exceed one everywhere, although it may exceed one some-
times. Finally, we have obtained sufficient conditions for the incentlve scheme to
be progressive or regressive.

In the_next section, we show that considerably stronger results can be proved

when n = 2. We also provide a simple algorithm for computing optimal incentive
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schemes when n = 2.

4. The Case of Two Outcomes

When n = 2, we will refer to q, as the "bad" outcome and q, > q; as the
"oo0d" outcome. In this case, the agent's incentive scheme can be represented
simply by a fixed payment w and a share of profits s, where w + 59, = Il,

W+ sq, = 12, i.e. s = (Iz—Il)/(qzmql). (Note that in principle s c¢an be nega-

tive or can exceed one.) In addition, we know from (2.2) that, at an optimum,
- = 0
(4.1) Egﬁ{ﬁl(a)V(w + sql) + wz(a)V(w + sqz) V(CFB(a))}

The expression in the brackets is strictly increasing in w. Therefore, given
s, there is exactly one value of w satisfying (4.1). It follows that, when

n = 2, an incentive scheme is completely characterized by the value of s.

Proposition 4 of the last section showed that Ii cannot always be declining.
When n = 2, this means that s 3_0.19/ Similarly, the proposition shows that s

<1 when n = 2. This has a number of interesting implicatioms.

Definition. Let n = 2. We say that a ¢ A is efficient if there does not
' - N 1 1 .
exist a' e A satisfying CFB(a ) 5_CFB(a) and ﬂz(a ) 3_n2(a), with at least
one strict inequality.
In other words, an action is efficient if the probability of a good out-

come can only be increased by incurring greater cost.

Proposition 9. Assume (Al) or (Al'), (A2), (A3) and V strictly concave. Let

n = 2. Then every second-best optimal action is efficient.
Proof: Since s > 0, it is not in the interest of the agent to choose an inef-
ficient action. Furthermore, if s = 0 and the agent is indifferent between an

efficient action and an inefficient one, then the principal will prefer the ef-
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ficient one. G.E.D.

Proposition 4, for the case n = 2, has a second interesting implication.

Suppose that we start off in a situation where the agent has access to a set of
actions A, and now some additional actions become available, so that the new

action set is A'2) A. Then, if the new actions are all higher cost actions for

Fp S are higher —- the

the agent than those in A -- in the sense that their C

principal cannot be made worse off by such a change.

Proposition 10. Assume (Al) or (Al') and (A2). Let n = 2. Suppose that A'2D

A and that a e A, a' € A'\A = CFB(a‘) 3_CFB(a). Assume that (A3) holds for
both A and A'. Then Max [B(a) - C'(a)] > Max [B(a) - C(a)], where C(C' is
aghA’ ~ agA
the second-best cost function under A',
Proof: Suppose (11’12) is an optimal second-best incentive scheme when the
action set is A. Let the principal keep this incentive scheme when the new
actions A'~.A are added. The only way that the principal can be made worse
off is if the agent now switches from a € A to a' e A'™~A. But a' must
then provide higher utility for the agent. Since CFB(a') Z_CFB(a), this can
only be the case if nl(a')v1 + wz(a')v2 > nl(a)v1 + nz(a)vz, which implies,
since vy 2_v1 by Proposition 4, that wz(a') Z_ﬂz(a). But it follows that the
principal's expected profits ﬂl(ql—Il) + nz(qz-lz) rise (or stay the same)

when the agent moves from a to- a' since, again by Proposition 4, s < 1, i.e.

9, ~ I, > q - I. Q.E.D.

As a final implication of Proposition 4, when n = 2, consider a manager-

entrepreneur who initially owns 100% of a firm, i.e. w = 0, s = 1. In the ab-

sence of any risk sharing possibilities the manager will choose a to maximize

ﬂl(a)U(a,ql) + wz(a)U(a,qz). Let a be a solution to this. Clearly a is
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efficient, Now suppose a risk neutral principal appears with whom the manager

can share risks. We know from Proposition 3 that at the new optimum s < 1 = s,
Therefore, by Lemma 4, » (a%) ¢ m,(a). In addition, €_(a%) < Cyg(a) by Propo-
sition 9. Thus, the existence of risk-sharing possibilities leads the agent to

choose a less costly action with a lower probability of a good outcome.

We may use Propositions 9 and 10 to develop a method for computing a second-
best optimal incentive scheme when n = 2. We will consider two cases: (1) where
A is finite; (2) where A 1is such that {CFB(a)I a e A} is an interval of the

real line.

Rec#ll that Proposition 5 states that when A is finite; the agent will be
indifferent between a* and some less costly action. This fact makes the com-
putation of an optimal incentive scheme fairly straightforward for the case n =
2 and A finite. We know from Proposition 9 that it is. never optimal to get
the agent to choose an inefficient action. Hence we can assume w.l.o.g. that

CFB(al) < CFB(aZ) € ve. < CFB(am) and wz(al) < wz(az) < ... < nz(am). The

computation of C(al) is easy: by Proposition 1, it is just CFB(al). To com—

pute C(ak), k > 1, we use Proposition 5. For each action aj, j <k, find Il,

12 so that the agent is indifferent between a, and aj and the agent's ex-
pected utility is U. This means solving

Trl(ak)vl + nz(ak)v2 = V(CFB(ak)) R
(4.2)

wl(aj)v1 + -rrz(aj)v2 V(CFB(aj)) s

which yields

Y - V(CFB(aj)) - V(CFB(ak)) + ﬂl(aj)V(CFB(aj)) - wl(ak)V(CFB(ak))

1 nl(aj) - nl(ak)

(4.3)
V(e @) - V(e ()

2 Trl‘(aj) - (ak)
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We then set Il = h(vl), 12 = h(vz). Note that vl < VZ in (4.3), so that

Doing this for each j = 1,...,k-1 yields (k-1) different (Vl’VZ) (and

(I,,I

1

k = 3, where the (vl,vz) pairs are at A,B.

2)) pairs, each with vl < vz. This is illustrated in Figure 1 for the case

Figure 1

ﬂl(ajz?vl + wz(ajz)v2 = V(CFB(ajZ))

'nl(ajl)v1 + nz(ajl)v2 = V(CFB(ajl))

zr”,——ﬂl(ak)vl + ﬂz(ak)v2 = V(CFB(ak))

-]
3 } Vl

We know from Proposition 5 that one of these pairs is the solution to (2.2).
In fact, the solution must occur at the (vl,vz) pair with the smallest vy
(and hence, by (4.2), with the largest v2) -- denote this pair by (Gl,vz){

To see this, suppose that the agent is indifferent between ay and a, under

(GI’GZ)' Consider the expression

(4.4) -nl(ak)vl + -rrz(ak)v2 - wl(aj)vl - -rrz(aj)v2

= (wl(ak) - wl(aj))vl + ("2(ak) - wz(aj))v2

When vl = vl,v

now that v, > Gl’ v, > 62. Then (4.4) falls since vl(ak) < wl(aj)- Hence the

9 = Vys this expression equals V(CFB(ak)) - V(CFB(aj?)- Suppose
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k k

In Figure 1, the solution is at A. Note that it is possible that the

agent now prefers aj to a,_ and so a_ 1is not implemented.

(Gl,ﬁz) picked in this way does not lie in VxU; i.e. h(Gl) or h(Gz) may
be undefined. In this case, the constraint set of (2.2) is empty and so C(a )

= o, If (01,52) 3 '1[* U/, then the principal's minimum expected cost of getting
the agent to pick a, is ﬂl(ak)h(Gl) + wz(ak)h(Gz). Expected net benefits are
B(ak) - C(ak). Finally, the overall optimum is determined by finding the a

which maximizes B(ak) - C(ak).

Remark 5.. In computing the cost of implementing a, ., ve have ignored actions
which are more costly for the agent than ay - This means that the cost function
which we have computed is not the true cost function C(a) but a modified cost
function C (a). Clearly, E‘(a) < Cc(a) for each a since more actions can
only make implementation more difficult. On the other hand, Proposition 10 tells
~
us that MaX [B(a) - € (a)] < Max [B(a) - C(a)]. Combining these yields
ag — atA

Max [B(a) - C(a)] = Max [B(a) - E (a)], which means that we are justified in
ach acgh
working with T (a) instead of C(a).

Another case where computation is quite simple is when {CFB(a)|a e Al 1is
an interval [g,E] of the real line. 1In this case, it is more convenient to
regard CFB rather than a as the agent's cholte variable and to express “1’

il as functions of CF This is legitimate since, by Proposition 9, ineffi-

2 B’

cient actions can be ignored. Proposition 9 implies also that T, is strictly

B’ We will assume in addition that “2 is differentiable when

Cep € (c,c), is differentiable to the left at c, and that d'rrz/dCFB > 0. We

also assume that V 1is differentiable on an open set containing (E}E)- To

increasing in C

ease the notation, we replace CFB by ¢, and let C{c) denote the least cost

of getting the agent to choose an action a for which CFB(a) = c.



il.

1f the principal wishes the agent to pick a cost level ¢ < ¢¥ < c, the

following conditions must be satisfied:

[\

T (c*)vl + ﬂz(c*)v2 V{(c*)

(419) :

ni(c*)vl + 'né(c*)v2 V' (c*)

where ﬂ;(c) = (dﬂi/dc). The second part of (4.5) follows from the fact that,
by (2.2), nl(c)v1 + ﬂz(c)v2 - V(e) achieves a maximum at c*. Using the fact
that ﬁi + ﬂé = (), we get

-wz(c*)V'(c*) + ﬂé(c*)V(c*)

(4.6) . mp (e*) ’
-wz(c*)V'(c*) + ﬂé(c*)v(c*) + V' (c*)
Vg T ﬂi(c*)

Notice that v, = vy + (V'(c*)/wé(v*)) > V). Now v, ,v, are determined not by

the conditiom that the agent is indifferent between c* and some c' # ¢* but
by the fact that the agent is indifferent between c* and c¢* + dc.ll/

One problem which can arise is that, having computed \ and v, in (4.6),
we may find that c* does not maximize nl(c)vl + 'nz(c)v2 - V(e). This can
happen because we have used only the agent's first-order condition in (4.6). 1In
this case, the principal is unable to implement ¢* and we must set C(e*) = o,
Another case where we must set C(c*) =« 1is if the solution (vl’VZ) to (4.6)
¢ Ux Y. 1In all other cases, we set C(c*) = nl(c*)h(vl) + nz(c*)h(vz). (We do
not, as in the finite case, ignore ¢'s greater than c* —- see Remark 5. In the
continuous case, it appears to be more convenient to consider all the e's.)

It is in fact quite easy to determine when c* maximizes 'nl(c)vl + ﬂz(c)v2

- V{(e). For v, =V, + (V'(c*)/né(c*)), and so

Trl(c)v1 + nz(c)v2 - V{c) = vy + ﬂz(c)%é%%z%-— vie)
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This is maximized at ¢ = c¢* if and only if

V{c*)

ok
ﬂz(C) wé(c*) - Vi) < ‘wz(c*) %% - V(e*) for all ¢ ,
Lies If and only if
5 (e*)
(4.7) ﬂz(C) - ﬂz(C*) < ) (V(e) - V(c*)) for all c .

Condition (4.7) can be expressed in a more illuminating way if we regard
T, as a function of V(c) rather than of ¢; that is, write ;z(v) = nz(h(v))

for V(c) < v ﬁ_V(E). Then Eé(v) = wé(c)lv'(c) and (4.7) becomes:
(4.8) m, (V) - T, (V(e*)) < WI(V(e*)) (v-V(c*)) for all V() < v < V(&)

(4.8) is certainly satisfied if ﬁz(v) is concave in v. Hence when %2 is
concave, we need only worry about the first-order conditions (4.5). This is not
surprising since ﬂl(C)Vl + nz(c)v2 - V(e) = ;rl(v)v1 + 1~r2(v)v2 - v = vy +
;2(v)(v2-vl) and, since vy > ML this is a concave function if %z(v) is.ég/
If ﬁz(v) is not concave, however, then (4.8) may well not hold. In this case,
we must set C{(c*) = o,

We can get a further necessary condition for overall optimality in the con-

tinuous case if C(c) is finite in a neighborhood of the optimal c¢*., Then

since C(c) = wl(c)h(vl(C)) + wz(C)h(vz(C)),

dvl dv2
C'(c) = 'rri(c)h(vl) + Tré(c)h(vz) + nl(c)h'(vl) = * -nz(c)h'(vz_) He

Using (4.6) and wi = - ﬂé, we can simplify this to get
(4.9) C'(c) = Wé(c)(h(vz) - h(vl))
(V(C))ﬂl(C)ﬂz(C)
- ?; (h'(vz) - h'(Vl)) V' (c)

m(v(e))?




as long as %2 is twice differentiable. A necessary condition for overall opti-

mality is that c* maximizes vl(c)ql + nz(c)q2 - C(e), i.e.

(4.10) C'(ch) = T(eN)gy TNy

Note, however, that this condition is not generally sufficient.

Unfortunately, the computational techniques presented above do not appear to
generalize in a useful way to the case n > 2. 1In order to compute an optimum when
n > 2, in the finite action case, it seems that we must, for each a € A, solve the
convex problem in (2.2) and then, by inspection, find the a € A which maximizes
B(a) - C(a). If A is infinite, one takes a finite approximation. These steps
can be carried out quite straightforwardly on a computer, although the amount of
computer time involved when the number of elements of A 1s large may be consi-
derable.

One case where a considerable simplification can be achieved is when MLRC
and CDFC hold. Then the solution to (2.2) has the property that (1) if A 1is
finite, the agent is indifferent only between a%*, the action the principal wants
to implement, and a', where a' maximizes CFB(a) subject to CFBga) < CFB(a*),
j.e. a' is the mext most costly action after a* (see the proof of Proposition
8); (2) if A is convex, then a* 1is the unique maximizer of [ ﬂi(a)V(Ii) -
V(CFB(a)), so that (d/da)(z ﬂi(a)V(Ii) - V(CFB(a))) = 0 is a necessary and suf-
ficient condition for the agent to pick a*. For more on the iatter case, see
Mirrlees [1979].

One may ask also whether Propositions 9 and 10 generalize to the case n >
2. The answer is no. Second-best optimal actions may be inefficient; i.e. there
may exist lower cost actions which dominate the optimal action in the sense of

first degree stochastic dominance.lé/ Also the addition of actions costlier than

the second-best optimal action may make the principal worse off (in Example 1, the
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principal's expected profits increase if action a3 becomes unavailable to the

agent), Finally, as Shavell [1979a] has noted, the agent may choose a higher

cost action under the second-best rather than under the first-best.

5. What Determines How Serious the Incentive Problem Is?

In previous sections, we have studied the properties of an optimal incen-
tive scheme. We turn now to a consideration of the factors which determine
the magnitude of L, i.e. the size of the loss to the principal from being

unable to observe the agent's action.

One feels intuitively that the worse is the quality of the information
about the agent's action that the principal obtains from observing any out-
come, the more serious will be the incentive problem. This idea can be for-
malised as follows. Suppose that we start with an incentive problem in which
the agent's action set is A, his utility function is U, his reservation
utility is ﬁ, the probability function is 7 and the vector of outputsis
q= (q1,...,qn). We denote this incentive problem by (A, U, u, w., q).
Consider the new incentive problem (A, U, ﬁ,irl, g') where m'(a) = Rn{a) for all
a e A and R is an (nxn) stochastic matrix. (here w{a),v'({a) are n dimensional
column vectors and the columns of R sum to one). Below we show that
C*'{(a) > C(a) for all a-e.A, where unprimed variables refer to the original
incentive problem énd primed variables to the new incentive problem.

The transformation from w(a) to Rm{a) corresponds to a decrease in

informativeness in the sense of Blackwell (see, e.g. Blackwell & Girshick [1954]L1%

o~

That is, if we think of the actions a & A as being parameters with respect to

which we have a prior probability distribution, then an experimenter who makes

deductions about a from observing ql,...,qn would prefer to face the func-

tion 7w than the function Rm.



Proposition 11. Consider the two incentive problems (A, U, U, T, q),

(A, U, U, 7', q') and assume that (Al) or (Al'), (A2) and (A3) hold for both.

Suppose that n'(a) = Rn(a) for all a ¢ A, where R 1is an (nxn) stochastic

matrix. Then C'(a) > C(a) for all a ¢ A, Furthermore, if V is strictly
cave and R >> O,lé/ then C__(a*) > min C__(a) and C(a*) < @ =3 C'(a*) > C(a*).
FB ach FB

The proof of Proposition 11 is very simple. Let (I',...,I;) be the cost

1
minimizing way of implementing a in the primed problem. Then in the unprimed
problem, the principal can offer the agent the following incentive scheme: for
each 1, if 9y is the outcome, I will throw an n-sided die where the probabi-
lity of side 3 coming up is rji’ the (j,i)th element of R (j = 1,...,n).
If side j then comes up, you get Ij.

With this incentive scheme, the agent is as in the primed problem. There-
fore he will choose a. Furthermore, the principal’'s expected costs are the
same as in the primed problem. This shows that the principal can implement a
at least as cheaply in the unprimed problem as in the primed problem, i.e. C'(a)
> C(a) for all a e A. The last part of the proposition follows from the fact
that the principal can do better by offering the agent the perfectly certain

n

utility level v, = .Zl rjiV(Ié) if the outcome is q, rather than the above
lottery. >
Remark 6. This argument shows that it is never desirable under our assumption
for the principal to offer the agent an incentive scheme which makes his payment

conditional on a particular outcome a lottery rather than a perfectly certain

income. A related result has been established by Holmstrom [1979].

Corollary 1. Make the hypotheses of Proposition 11. If, in additiomn, q' is

such that q'R = q, we have L' < L.



Proof: Obvious since B'(a) = q'n'(a) = qQ'Rm(a) = qn(a) = B(a).

In the case n = 2, the transformation 1 - ' = Ry is eéasy to interpret.

Take any two actions al,a2 € A, and consider the likelihood ratio vector
m(a) w (a)
[ 2 W NS
m(dy) 7 1y (ay)
wz(al)/nz(az). Then it is easy to show that
1] 1
[ﬂl(al) wz(al)J _ [wl(al) ﬂz(al)]

"i(az) ! ﬂé(az) wl(az) ? nz(az)

- Assume without loss of generality that wl(al)/nl(a <

9

(5.1)

In other words, the likelihood ratio vector becomes less variable in some
sense when the stochastic transform R is applied. In fact the converse to
this is also true: if (5.1} holds, then there exists a stochastic matrix R
such that n‘ = Rr  (see Blackwell & Girshick {1954]1). wWhen n > 2, a simple
characterisation of this sort does not seem to exist, however.

One might ask whether a converse to Proposition 31 holds. That is,
SuUppose C'(a)_z C(a) for all a ¢ A and all concave utility functions V. Does
it follow thatqffa) = Rm(a) for all a ¢ A, for some stochastic R? A converse
along these lines can in fact be established when n = 2. Whether it holds
for n > 2, we do not know.

Corollary 1 gives us a simple way of generating worse and worse incentive
problems: repéatedly apply stochastic transforms to T. Suppose that we do this
using always the same stochastic transform R, where R >> 0 and is invertiblel
That is, we consider a Sequence of incentive problems 1+2,..., wvhere in the mth
Problem nm(a} = Rm-1w(a) for all a ¢ A, and the gross profit vector qm satis-
fies qum-l = q (this has a solution since R is invertible). We know from
Corollary 1 that Lm will be increasing in m. The next proposition says that

in the limit the loss from not being able to observe the agent reaches its maxi-

mal level,.



Definition. Let L* = Max (B(a) - ¢_ (a)) - Max {B(a') = C_(a")| a' minimizes
E—— aEA FB FB
CFB(a) on Al}.

Since C{a') = CFB(a') if a' minimizes C_ (a), L* is an upper limit

F§

on the loss to the principal from being unable to observe the agent. The next
pProposition shows that as the information q reveals about a gets smaller and

smaller, the principal loses control over the agent, i.e. the agent chooses the

least-cost action.

Proposition 12. Consider a sequence of incentive problems (A, U, ﬁ, s q ),
m’ “m

_ m-1 —
m=1,2,..., where nm(a} = R ﬂ1(a) for all a e A, qm Rm ! = q1 for some

invertible stochastic matrix R > > 0. Assume (A1) or (A1'), (A2) and ﬁ,(a) >.0 for
i
all i=1,...,nand a € A. Then if V is not a linear function, 1lim L = 1*,
m

Moo

Proof It suffices to show that 1lim C(a*) = =« for all a* with CFB(a*) >
T+
i L *l - e o b t
2i§ CFB(a) Suppose not for some such a Let (Im1 ,Imn) e the cos
minimising way of implementing a* in problem m. Then ) nmi(a*) L and
i

} Ta; (8%}V(I_.) are both bounded in m. It follows from Bertsekas [1974] that
i .
the (Imi) are bounded. Hence w.l.0.g9 we may assume Imi + Ii for each 1i.

It is easy to show that, since R is a strictly positive stochastic matrix,

lim Rm-1 = R* where R* has the property that all of its columns are the same.
mM->+m . I
Therefore 1lim nm(a) = R*ﬁ1(a)= T is independent of a. But this means that
M-+ .
3 * = T = i
lim ? ﬂmi(a )V(Imi} Z ﬂiV(Ii) lim ; nmi(a)V(Imi) for all a ¢ A. Hence
B o i : i M+ i

the agent will prefer actions a with CFB(a) < CFB(a*) to a% This contradicts

the assumption that the incentive scheme implements a*. Q.E.D.

We turn now to a consideration of another factor which influences L: the
agent's degree of risk aversion. Since no incentive problem arises when the

agent is risk neutral, but an incentive problem does arise when the agent is
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risk averse, one is led to ask whether L increases as the agent becomes more risk

averse. One difficulty in answering this question is the following. The way one

makes the agent more risk averse is to replace his utility function U(I,a) by

H(U(I,a)) where H is a real-valued, increasing, concave function. However,
this transformation will in many cases destroy the additive or multiplicative
separability upon which our analysis is based, To get round this difficulty,
we will not attempt to deal with this question in general, but will confine
our attention to the case where A is a subset of the real line and V(I) =

- . e . . -k (I-a
-e kI, G(a) = eka, i.e. the agent's utility function is U(a,I) = -e (1 ),

where k > 0, Assume also that U = —e—kq. An increase in risk aversion can
then be represented simply by an increase in k.

e—k(I*a) and U = —ehhﬁ then

Note that if the agent's utility function is -
CFB{a} = a + a, which is independent of k. Hence first best profits are also

independent. of k.

Proposition 13. Consider the incentive problem (A, U, U, T, q) where A is a

ka

—ek(I_a), U= -e , and k > 0. Assume (A3).

subset of the real line, U(a,I)
Write the loss from being unable to observe the agent as L{(k). Then

lim L{k) = 0, 1lim L(k) = L*,
k+o K-+

. Proof To show that 1iﬁ L(k) = L*, it suffices to show that lim C(a*,k) = =
k+w k+ow
for all a* with CFB(a*) > min CFB{a). Suppose not for some such a*, and let
agh
< *). i - i *
CFB(a) CFB{a ) Then if (Il' ,In) implements a*, we must have

_ (E - (_a*le-kli_) Jka* > - (Z _"i(a)e—kli) ka
i 1 {

(Il,...,In of course depend on k.)

Therefore,



(5.2) ek(aﬁ_a) j_Zni(a)e_in /] ﬂi(a)ewin .
i i

Now let k + =, The LHS of (5.2) » », Therefore so must the RHS. We may assume

w.l.o.g., however, that I1 = m%n 1,. Then
1
-kI,; k(I1-I;)
Z wi(a)e 1 Z ni(a)e 1754
i _ i
) “i(a*)e-in ) 1Tj_(a”‘)ek(ll_li)
i i

which is bounded since the demoninator 3_ﬂl(a*). Contradiction,

We show now that lim L(k) = 0. Let Ii = qi - F. Then the agent
k+o
maximises
-k (I-a) k2 2
(5-3) E("e ) = _E(1“k(1_a) +"2—" (I"'a) + -o-oo)

k2 2
-1 + k(ZNi(a)qi—F—a) -5 E{I-a) + .s.ees

It follows that the agent maximises

-k 2
(Zni(a)qi—F—a) -3 E{I-a)” + ..ven

-

which means that in the limit k + 0 the agent maximises B({a) - CFB(a}, i,e.
chooses a first best action. Furthermore, setting (5.3) equal to —ebka:

-1+ka + ....., we see that in the limit k + 0,

Max (] w,(a)g.-a) - F = a,
L 74 i
aehA i

so that the the principal's expected profit equals F = Maﬁ (Z LFC P a) -~a =
agA %
i

Max (B(a) - C__,(a)) = first-best profit. Q.E.D.
acA FB

Proposition 13 tells us about the behaviour of L(k) for extreme values of

k., It would be interesting to know whether L(k) is increasdng in k. We do
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not know the answer to that question except for the case n = 2, A finite.

Proposition 14, Make the same hypotheses as in Proposition 13, Assume in addi-
tion that n =2 and A is finite. Then L(k) is increasing in k.

Efggﬁ It suffices to show that Cla,k) is increasing locally in k for

each a ¢ A whenever C(a,k) is finite. Let Kk = Ak, 2> 1, Assume that (11,12)

is the cost minimising way of implementing a given K. Then, by the results of

Section 4, e.g. eq. (4.2),

T.w, + T w,_ =

M T (@) '
(5.4)
L R S
171 272 eg(a'+a) '
-K1 -k1
= = 2 = = b= v L ¢
where v, e 1, v, e ’ ﬁ1 nl(a), L wz(a), L n1(a Y. LN ﬂz(a ),

a'ehA, a' < a. Furthermore we can pick a' so that a' is independent of k for

close to 1.

{(5.4) determines w1 and w2 for each value of k. The cost of implementing

a, C(a,k}, is then given by

~ 1
{5.5)} Cla,k) = H1I1 + n212 = —-E (n1 log w1 + ﬂz log wz).

Differentiating (5.5) with respect to ) we get

yak 1
{5.6) - 3C(ayak) = (v, log w, + 1 log w —_“1 dw1 f.ﬂz ‘_dw2 ).
A k 1 1 2 2 hem e — =
1 di w2 anx

-_ - [ i
Set x = e k(a+u), Yy = e k(a'+a) in (5.4). Then e k(a+a) = xA
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Hence
' Eﬁl + EEZ = x log x
1 g 2 gx
(5.7)
dw dw
! ——l + ! —*-2- = y log v
1ax 2 ax ’

where derivatives are evaluated at A = 1. Solving (5.4), (5.7) yields

., _ v,
Y S T T Ty
17 Tl -qan. T Tnicod ’
12 12 2 2
‘ —
dwl ] ToX log x LPY log vy
dix Tl'é - “2
It follows that log Wy 3_(l/wl)(dwl/dk)_ For
dw T - T,y mlx - 7wy Twlxlogx - 7wy logy
{5.8) Wy log L d%l = i, -~ wz log i, — ﬂ2 -2 — ﬂ2
2 2 2 2 2 2
= 23— [(ax - By)log ==BY _ ox log x - By log y] ,
ﬂ2 - "2 a - B

where a = wé, B = LI However, the RHS of (5.8) > 0 by Lemma 3 below. The
same argument shows that log v, 3_(1/w2)(dw2/dl). It follows frem (5.6) that

(aC/3x) > 0, i.e. C dis increasing locally in k.

Lemma 3. Assume o,f,X,y > 0. Then if o > 8 and ax > By, ax log x - By log vy
< (ax - By) log (EE"E_EZ)‘ On the other hand, if o < B and ax < By,
ax log x - By log y > (ax - By) log (9%—:—%1)-

Proof: Since =zlog z 1s a convex function,

B a - B, .ax - By ax - B
o (v log y) + ) G ™ log —Ertfgi) > x log x

This proves the first part. The second part follows similarly. Q.E.D.
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BEEEEE_E- Propositions 13 and 14 tell us how the principal's welfare varies with
k. It is alsgo interesting to ask how the shape of the optimal incentive scheme

depends on i, Unfortunately, even in the case n = 2, very little can be said.

In this case, the incentive veheme is charaetardsad by the agent's share s. It
is not difficult to construct examples showing that an increase in the agent's risk

aversion may increage the optimal value of 8, or may decrease it.

We conclude this section by considering how L depends on the agent's
incremental Costs. Suppose that we write the agent's cost fqnction as
GA{a) = o+ AF(a), where » > o, Then, when A is small, one feels that L,
will be small since the agent does not require much of a reward to work
hard. The fact that 1im L{A) = 0 has in fact been established by Shavell

A+o

[19%0] . We prove a somewhat stronger result for the case of additive

Separability,

Proposition 15, Consider the incentive problem (A, 7., v, G, g, U), where

Gl(a) = a + AF(a) for al} a €A, X >0, Assume that (A1), {(A2) and {a3) hold
for this problem . Assume also that (1) A is _

an interval of the real line and m(a) is twice differentiable and F{a) is

differentiable in the interior of A; (2) Every maximiser of B(a) lies in the

interior of a, Then lim (L(A)/2) = o.
: A+0
Proof Suppose first that B(a) has a unique maximiser a*, Consider the

incentive problem with 3 = 1, Then there are a's arbitrarily close to ax

for which c(a) 1s finite. For let the principal set ﬁi = Trq; -k where k

is chosen so that v, € YV for an i. Then the agent will maximize Zﬂi(a)U(a,Ii),
i.e. X“i(a)qi = F(a)/r. By letting r + », we can get the agent to choose an

action arbitrarily close to a*. For such an action, C(a) will be finite.
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Consider now an a arbitrarily close to a*. Let (Vl,...,v ) be the cost
n

minimizing way of implementing a when A = 1. Then it is clear from (2.2) that

(Avl + B,...,Avn + B) will implement a for A # 1, where

A T @V, - F@@) -a+8=7
It follows that

L(x) <7 ni(a)qi - h(U + o+ AF@)) - (§ (), - ) . (@hGv, +8)) ,

where a maximizes X wi(a)qi - h(@U + o + AF(a)), i.e. a is the first-best
action in problem .

Therefore,

5{52-5_ [%{Znifa*)qi -h(U + o + AF(a*)) - (Im;@)q; - I (a)hQv, + 8)))]
+ [%{z 1 @)a, - h(@ + o + AF@E)) - I (@%)q, + h(T + o + AF(a*)}]

it is easy to show by expanding the first-order conditions gz-z 1ri(a*)q:_L = 0,
g; (Zﬂi(a)qi - h@ + o + AF(3)) = 0 as a Taylor's series that the second sguare
bracket ~ 0 as A + 0. To see that the first square bracket - 0, note that,
since a is arbitrary, we can make a converge to a* ag fast as we like.

Therefore we need only show that
1 —_
(5.9) lim T Q m@hGv, +8) - h(l + a + AF(a*))) = ¢
But
) wi(a)[h()nri + B8) - h(U + o + AF(a*)))

= I (a) th(av, + U+« —:unj(a)vj + AF(a)) - h(U + a + AF(a*))]
1 -
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1

In, (a) [h(U + a) + h'(U + @) (rv, - AZﬂj (a)vj +AF(a)) + ...,

- h{U + o) -~ h' (U + &) (A\F(a*)} + ....]

[

WU & 0) OF(2) - \P{AY)) L ...,

{5.9) follows.

1} does not have a uniqgue maximiser, we choose a to be arbitrarily

" » gset of maximisers, The same argument applies.

Q.E.D.

oears that a similar result can be established for the multiplicatively
1se. S8ince the proof is more complicated, however, we will not pursue

here.
ince the marginal product of labour of the agent - that is the

expected profit resulting from an extra pound of expenditure by the

R 1 cos .
, roportional to 3 Proposition 15 can be interpreted as saying that

loss L 1is of the same order of magnitude as the reciprocal of the

16/

.inal product of labour.=—

pose of this paper has been to develop a method for analyzing the

,ent problem in the case where the agent's utility function is separ-

‘on and reward. Our method consists of breaking up the principal's p
" a computation of the costs and benefits aceruing to the principal

. nt takes a particular action. We have used this method to establish

results about the structure of the optimal incentive scheme and about
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the determinants of the welfare loss resulting from the principal's inability to
observe the agent's action. We have shown that it is never optimal for the incen~-
tive scheme to be such that the principal’s and agent's payoff are negatively re-

lated over the whole output range, although such a relationship may be optimal

OVer part of the ramngs.  Ue have found sufficient conditions for the incentive
scheme to be monotonic, progressive and regressive. We have shown that a decrease
in the quality of the principal's information in the sense of Blackwell increases
welfare loss. When there are only two outcomes, welfare loss also increases when
the agent becomes more risk averse. Finally, we have discussed how our techni-
ques can be used to compute optimal incentive schemes in particular areas,

While we have talked throughout about "the" principal-agent problem, we have
in fact been considering the simplest of a number of such problems. More complicated
Principal-agent problems arise when not only is the principal unable to monitor the
agent, but also the agent possesses information about his environment, i.e. about
A, m or U(a,I), which the principal does not, Such problems share a number of
features with the preference revalation problems studied in the recent incentive

compatibility literature; see, for example, the Review of Economic Studies

Symposium [1979]. A start has been made in the analysis of such problems by Harris
and Raviv [1979], Holmstrom [1979], and Mirrlees [1979]. 1It will be interesting to
see whether the techniques presented here will also be useful in the solution of

these more complicated principal-agent problems.

FOOTNOTES

b,

Recent discussions of the principal-agent problem include Harris and Raviv
[1979], Holmstrom [1979], Mirrlees [1975,1976,1979], Radner [1980], Ross
[1973], Rubinstein and Yaari [1979], Shavell [1979a,1979b], Spence and Zeck-
hauser [1971], Stiglitz [1974] and Zeckhauser [1970].
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11/

i~
(a3

The assumption that the principal cannot monitor the agent's actions at aill
may in some cases be rather extreme. For a discussion of the implications of
the existence of imperfect monitoring Opportunities, see Harris and Raviv

[1979]1 Holmstrom [1979] M Chavell [19793,1979b]. See also Remark 3 in

Section 2,

This distinguishes our study from the literature on incentive compatibility,
See e.g. the recent Review of Economic Studies symposium [1979]. The incen-
tive compatibility literature has been concerned with incentive problems
arising from differences in information between individuals rather than with
those arising from monitoring problems.

Among other things, Proposition 4 shows that it is not optimal to have ql—Il
= q2-12 = ... = qnhIn' This result has also been established by Shavell [1979b]

under stronger assumptions.

We use the term decreasing (resp, strictly decreasing) to mean non-increasing
(resp. decreasing).

See Mirrlees [1976] or Holmstrom [1979]. Milgrom [1979} has shown that MLRC,
as stated here, implies the differential version of the monotone likelihood
condition which is to be found in Mirrlees [1976] or Holstrom {1979].

The function V violates (2) of (Al), but this is unimpor tant for the example.

To prove the converse, define a £ a' if ﬂi(a')/wi(a) is increasing in 1.

(3.11) implies that £ is a complete pre-ordering on A. Furthermore, &2 is
continuous. Since A 1ig compact, there exist a, a € A such that adag
a for all a e A. Given a e A, consider A(ni(a)/wi(a)) + (lul)(ni(g)/wi(a)).

When A = 1, this is increasing in 1, and, when X = 0, it is decreasing in i.
Furthermore, (3.11) implies that it is monotonic in i for all 0 < A < 1. It
follows by continuity that it is independent of i for some 0 < A <1,

Another case which ensures monotonicity of the optimal incentive scheme is when
the firm's profits can pe freely disposed of by the agent; i.e. if the agent
can always make a better outcome look like a worse outcome by reducing the

Shavell [1979a] also Proves that s > 0 when n = 2, but under stronger as-
sumptions.

Mirrlees [1975] computes an example for the case n = 2 using equations like
(4.6).




47.

~— The importance of the concavity of the probability functions LR for com-

putational purposes has been noted by Mirrlees [1979). See also the end of
this section.

13/ _ a
Let A = {al, ays a3}, n = 3. Assume CFB(al) < CFB(ai) < CFB(aB)’ and that

F(al) = (3/4,1/8,1/8), n(az) = (1/3,1/3,1/3), n(aB) = (5,35,0).  ((A3) is vie-
lated, but this 1is unimportant.) Then C(al) = CFB(al) since a; is the

least cost action, and C(ag? = GFB[ﬂB] cinoa &3 can be implemented by set-

ting Il = IZ’ I3 = -=. However, C(az) > CFB(aZ) and, in fact, 1f the agent
is very risk averse, C(az) will be so big that it is profitable for the prin-
cipal to implement a3 rather than a2 (the effect of risk aversion on C(a)
is discussed ip Section 5). This is in spite of the fact that g is ineffi-

cient relative to az. 3

14/ The possibility of using Blackwell's notion of informativeness to characterize

the seriousness of ap incentive problem was Suggested, but not explored, by
Holmstrom [1979].

16/

they are both risk averse, and there may be a conflict over the type of lottery
they should share in eéven when there is no disutility of effort for nhe agent.
On this, see Rogs [1973] and Wilson [1968].
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