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1. INTRODUCTION
How is the economic response to uncertainty influenced by individual
risk aversion? This question has been the focus of an important part of

the literature on the economics of uncertainty in the past fifteen years.

The direct impetus for most, if not all, of this work on risk aversion was

the introduction, by Arrow [1971] and Pratt [1964], of measures of the local

risk aversion associated with a von Neumann-Morgenstern utility functiom,

They argued that RY = - ET is an appropriate measure of the local risk of
u

aversion of an individual who maximizes the expected value of the (twice dif-
ferentiagble) wvon Neumann-Morgenstern utility function u.*

Arrow and Pratt justified this measure by showing that when it rose,
economic behavior became more risk averse. Specifically, suppose that there
are two individuals, 1 and 2, with individual 1 maximizing the expecteﬁ

value of ui; suppose alsc that

(1) RL = _ -2, 2 - g™
u l.12

holds uniformly on the relevant domain of the ui's. Arrow and Pratt showed
that individual 1's behavior would then be more risk averse.

For example, suppose that the individuals invest their wealth in a safe
and a risky asset. Denote the random rate of return of the risky asset by
X. Individual i with initial wealth y invests B, in the risky asset

and y - Bi in the safe asset. His optimal choice ﬁi(Q,y) is the wvalue

of Bi in [0,y] which maximizes

*In fact they proposed -(u"/u') as a measure of local absolute risk aver-
sion, as oppeosed to relative risk aversion. They also provosed a definition
for this later term. In this paper, we will be concerned with absolute risk
aversion only.



+ B.x) .
Eui(y ix)

Arrow and Pratt showed that if (1) holds uniformly, then for any vy and non-

degenerate random variable, x,

(2) B (y) < ByGRy) .

In other words, individual 2's optimal portfolic includes more of the risky
asset,

Arrow and Pratt provided an alternative justification by introducing the
risk premium associated with a random variable. If the random variable x 1is
interpreted as a random variation in wealth, the associated risk premium
ﬂi(i,y) is the reduction in mean wealth that individual i with initial
wealth y will accept to eliminate the random variation. Formally, ﬂi(i,y)

is defined by
(3) Eu,(y + x) = ui[y + Ex - wi(x,y)]

Arrow and Pratt showed that if (1) holds uniformly, then for any vy and non-

degenerate x,
(4) T (5,y) > T, (k)

Subsequent papers by many other authors have used RY  to study the influ-
ence of increases in risk aversion on expected utility maximizing decisions
made in the face of economic uncertainty. In the preponderance of cases,
increases in R imply decisions that represent, in an intuitive sense, more
risk averse responses to uncertainty.

In virtually all of this literature, there is assumed to be a single



source of uncertainty.* In the portfolio problem, for example, the only risk
is that which arises because there is uncertainty about the retura to invest-
ment in the risky asset. Similarly, the risk premium is defined as the
reduction in mean wealth that an individual will accept to completely elimin-
ate random variation in wealth.

Economic decisions are rarely taken in such isolated circumstances, how-
ever. There are often important multiple sources of uncertainty, and decisions
made to avoid, even partially, one source of risk may be affected by the
presence of others. In the case of investors making portfolic choices, random
income fluctuations may arise from sources other than the random return on
risky asset holdings; for example, investors may also receive a wage that
varies randomly. It is natural to ask whether Arrow and Pratt's results
apply in such situations._ Suppose, for example, that each individual received
a nonnegative random income y and that he also possesses some initial wealth
§ which is nonstochastic and positive. Before knowing ; he invests the non-
random wealth, 8, in a safe and a risky asset. Letting X be as bafore, we
can define ﬁi(§,§) analogously to ﬁi(i,y) as the value of Bi in {0,8]

which maximizes

Eui(y + § + Bi x) .

*There is, of course, a large literature on portfolic choice with many risky
assets. We will discuss the relationship of the present analysis to that
literature in the concluding section. Problems involving multiple sources
of uncertainty have also been treated explicitly by Schlaiffer [1969], Hil-
dreth [1974a,1974b], Hildreth and Tesfatsion {1974,1977], and Ross [1979].
Ross, in particular, proposes a strong measure of risk aversion which is
appropriate for use when there are multiple sources of uncertainty which are
uncorrelated. We will discuss the relationship of Ross's results to our own
in the concluding section. Finally it should be added that, although Pratt
does not explicitly treat the case of multiple sources of uncertainty, one of
his theorems can be interpreted to obtain a result, specifically Corollary 2
below, that is applicable in these cases.



If (1) holds uniformly, can we then say that
(5) B (x,y) < B,y

if % and y are nondegenerate random variables?
When the random variable % is added to a random initial wealth ¥, the

risk premium ﬂi(§,§) is defined analogously to wi(i,y) by the equality
(6) Eui(y + %) = Eui(y + E% - ﬂi(st))

If (1) holds uniformly, will

M 1 ) >y ()

when x and § are nondegenerate random variables?

The present paper studies these questions. Surprisingly, we find that
there are cases where x and § are independent and (1)} holds uniformly, but
(5) and (7) fail.* Such a case is presented in Section 3. Tortumatelv. how-
ever, we find that fairly painless restrictions allow us to extend the Arrow-
Pratt results to the case of multiple sources of uncertainty. The restrictions
are of two kinds. First, we must make some assumptions about the independernce
of the random income variations from different sources. In particular we assume
that x and § are independent.** Second, the utility functions must be taken
from a restricted class; specifically, we show that it is sufficient that either

utility function be non-increasingly risk awverse.

%Cass and Stiglitz [1972] have also dealt with this particular guestiomn.
Their Example 3 is, in essence, a case in which (1) holds but (5} and (7)
fail. They do not have x and y independent, however. The Cass-Stiglitz
paper is primarily concerned with multiasset portfolioc choice and will be
discussed further in the concluding section.

**Ross [1979] considers the related case in which E[§|y] = 0. Abstracting
from translations of the mean, this assumption is weaker than independence.
It does, however, imply that X and ¥ are uncorrelated.



The need for restrictions of the first kind should be obvious. Without
some such restrictions the Arrow-Pratt results could not pgssibly be extended.
If, for example, returns to the risky asset were negatively correlated with
other sources of uncertainty, increases in holdings of the risky asset could

actually reduce risk. Thus more risk averse individuals would invest more in

the risky asset. Similarly when x and y are negatively correlated, X + ;
will be less risky than x plus a certainty equivalent. As a consequence,
risk averse individuals would have te be compensated if § were to be replaced
by a certain payment; i.e., the risk premium, T(x,y), would be negative. Fur-
thermore, the absolute size of the compensation would have to be higher for
more risk averse individuals. Thus wl(§,§) would be smaller; i.e., more
negative; than nz(i,ﬁ) if RrL 3_Ru2.

The restrictions to the clags of non-increasingly risk averse utility
functions is not too troublesome, since this class has gained acceptance on
both theoretical and empirical grounds. See, for example, Arrow [1971] and
Stiglitz [1969a, 1969b]. Section 4 shows that non-increasing risk aversion
for either individual is sufficient for (1) to imply (5) and (7) when X and
§ are independent. 1In fact, we derive these results as Corollary 1 of a
more widely useful theorem that will be applicable when there are more than
two independent sources of random variation in wealth. Specifically, when
x and y are independent, the influence of risk aversion on m(x,y) and
B(x,¥) can be studied by investigating the risk aversiom of the utility func-

tion V defined by
(8) V(x) = Eu(y + x)

In fact, it is easily verified that ﬁz(i,ﬁ) is less than nl(§,§) and



B1(§,§) is less than Bz(§,§) when Vl is more risk averse than VZ' This

result is stated formally in the next section, which serves as a preliminary

to the remainder of the paper.

2,  PRELIMINARIES

In the analysis to follow, the utility functions ugs i=1,2; will have
as their domain (EJE)’ a non-empty subinterval of real numbers. Each u;
will be assumed to be concave and twice differentiable and Rui will be
defined as in the preceding section. The random variable’-ﬁ will take values
in (Z’§) where ; -y < z - Z. The probability measure u defined on the
Borel sets of (X)§) by y will be denoted by u. We now let x =2 -y
and x =z - y. For each x 1in (E,E), Vi(x) is defined by an equation
analogous to (8) in which u, T ou. We assume that the expectations defining
Vi exists and that Vi is twice differentiable on (§,§). The Arrow-Pratt
risk aversion measure of Vi is Rvi. The comments made at the coneclusion

of the introductory section are formalized in the following Proposition, which

is an immediate Corollary of Pratt's Theorem 1.

Proposition: Let § be a fixed random variable. The inequalities

(9 AR NCR)
and
(10) B, (%,5) < B,(x,7)

hold for all x independent of § if and only if

v v
(11) RIx) >R ?2(x)



for all x & (3{_,;:). If
v
(12) R'Lx) > R 2(x)

for all x & (E:;‘)’ then (5) and (7) will hold for all x  independent of §

3. AN EXAMPLE

Given the proposition, it is easy to find a case for which (1) holds uni-
formly but (5) and (7) fail. In this section we present such a case in which
x and § are independent.

Restrict vy + x to the interval (0,1), and let
u, (y) = - %yz and u,{y) = v -5 7¥
1 7 ’ 2 22 ‘

Then

u'l(y) = 1-v,
uI(y) = -1,
u 1
1 -
R (Y) 1 < ¥ ’
al = 1-0,
W) = -5y,
9

u 5
R 2(?) = —*'"g—ia

1 - &y

It can be shown that for all y & (0,1), Rul(y) > Ruz(y)- Hence (1) holds
uniformly on the relevant interval.

Now let y be a random variable that takes on the values .0l and .99
each with probability Y%, and let =x = 0. Simple calculations establish that

~Eu£(§ + x)

v
—= = 2.00, R 2(x) = 2.95
Eui(y + x)

va(x) =



Since we are dealing with polynomial utility functions, there of course

exists a neighborhood of x = 0 for which
v v,.
R 2(x) > R H(x)

holds throughout. By the argument presented at the end of Section 1, it fol-

lows that we can find x's for which (5) and (7) are violated.

4. THE CASE OF NON-INCREASING ABSOLUTE RISK AVERSION

The example of the previous section involved independent x and y
variables and two utility functions which exhibited increasing absolute risk
aversion. We will show in this section that if either of the utility functions
in question exhibit non-increasing risk aversion and if % and ; are indepen-
dent, then (1) implies (12), (5), and (7). 1In fact, we will work with the
weak form of these inequalities throughout. The reader can easily verify, how-

ever, that only slight modifications in the analysis are required to obtain

the results with strong inequalities,
Theorem: If

(13) R'(z) > R 2(z)

- u u ) .
for all z £ (z,z) and either R 1 or R 2 is a non-increasing function

of z on (E,E), then (11) holds on (g,i).

Before giving the proof, we state and prove the following.

Lemma: For any Zs 2y in (E,E), we define r by

ui(za) ué(za)

(14) N ECRR A e



If, for all z > z

a in (z,2),

b
(15) {[R“1<za) - R 2(z )] + RL(z,) - R'2(z,) 1)
FA-Rz) -r2: )] >0
b a -

then (12) holds on (x,x).
Proof:

Straight forward algebraic manipulations demonstrate that (15) is equi-

valent to

(16) —[uz(za)u'z(zb) + u'i(zb)UE(za)] > —[u'?:(za)ui(zb) + ug(zb)u]'_(za)] .
Note that (16} is symmetric in %, and Zy - If z, 2 ZB’ we can now let

z, =z, and zS =z and obtain

(17) L ey (ze) + uj(z)u) (2 )] 2 ~luj(aul(z,) + uj(z)u) (2 )]
from (16). 1If 28‘1 Za’ then (17) is obtained from (16) by letting zB =z
and 2z =z . Thus (17) holds for all 2,,2g in (z,2) if and only if (15)

holds for all z >z in (z,2).

The proof can now be completed by demonstrating that if (17) holds for
all Za’zB in (E;E): then (11) holds on {3,%). To begin, we assume that
x & (E,E) and that §u and §B are two independent random variables, each
of which has the same distribution as y. We then define the random variables

z, and zB by letting

(18) Eu = x + ?a, and z. = x + v

If we now substitute (18) in (17), take expectations of both sides of the

resulting inequality and make use of the independence of ;a and §B we
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obtain

_ n T oAE - 1 e 1 -

19y [Eul(x + yu)Euz(x + ys) + Eul(x + yB)Euz(x + ya)]

- " - 1 ~ " > 1 =
[Euz(x + ya)Eul(x + yB) + Euz(x + VB)Eul(x + ya)] .

Since §a and §B each have the same distfibution as y, (19) is equivalent

to
" > ' - " s 1 =
-2Eul(x + y)EuZ(x +y) > —2Eu2(x + y)Eul(X + v)
which is in turn equivalent to (11). |[

Proof o0f the theorem:
B 'L'll U.2
Pratt has shown that r < 1 for z, 3_zb if R “(z) > R “(z) on
- u u -
(z,2). If R 1(z) >R 2(z) on (z,2), then the first term in (15) is mon-

u
negative. If R 1 is a non-increasing function of z, then we write

(200 RI() - Rz = R1G) - RI)]+ R1z) - %21

If Rul(z) > Ruz(z) on (E,E), then the second term in (20) is nonnegative.
The fact that Rul is non-increasing implies that the first term in (20)

is nonnegative. Since r < 1, the second term in {(15) is therefore nonnega-
tive.

u
If now R 2 is non-increasing in x, we write
u u u u u u
1 - 2 - 1 - 2 2 _ 2
(z21) R7(z) - R%z) = [R (z) - R “(z )] + [R (z) - R “(z))] .

u u -
Then R l(z) >R 2(z) on (z,z), implies nonnegativity of the first term in
u
(21) and R 2 non-increasing implies nonnegativity of the second term. Again
r £ 1 implies that the second term id (15) is nonnegative,

We can now apply the lemma to establish the theorem. ||
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- u u
Corollary 1: If (13) holds on (z,z) and either R I or g2 is a non-

increasing function of z on (z,z), then

@) B Gy < 8,6y
and
(23) ™ (YY) 2 1, (x,9)

if x and y are indepenedent and range over values such that wealth always

lies in (E,E).

Corollary 1 follows immediately from the Proposition and from the nre-
ceding theorem. The follow corollary of Corollary 1 can also be ohtained as

a trivial corollary of Theorem 5 in Pratt [1964].

Corollary 2: If RY(z) is a non-increasing (decreasing) function of z,

then B(x,y + 2z) is a nondecreasing (increasing) function of 2z and

m(x,y + z)}) is a non-increasing (decreasing) function of z.

Proof:

Now apply Corollary 1. []

5. CONCLUDING REMARKS
In this section, we briefly discuss the relationship of our results to the

literature on multiasset portfolio choice. We also compare the results des-

cribed in this paper to those obtained by Ross [1979].
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Much of the literature on multiasset portfolios, which began with the
work of Markowitz [1959] and Tobin [1958], deals with the case of "separ-
ability." In this case, the choice of a multiasset portfolio can be reduced
to the choice of a portfolio containing one safe asset and shares of one

mutual fund of risky assets. 1In this literature, the return to the mutual

fund is the only risky asset. Thus when there is separation, the analysis

of riék aversion's influence on investor behavior can be carried out using
the techniques developed for the case of a single source of risk. Cass and
Stiglitz [1970] have characterized the class of cases in which separation
holds. Their work has demonstrated the restrictiveness of this assumption.
In a subsequent paper [1972], they have shown that, in general, it is impos-
sible to extend the above mentioned Arrow-Pratt theorem on the influence of
risk aversion on portfolio behavior to a multiasset context in which there

is no separation. Oliver Hart [19753] strengthened this negative result by
showing "that the separation property is necessary for the generalization of
Arrow's results"* to the case of many risky assets. He, in facf, was able to
show that "given a utility function which does not possess the separation
property, only trivial wealth effect, comparative statics properties can hold
for all probability distributions of security returns."** From this result
Hart concluded "that the only hope of obtaining wealth effect comparative
statics properties for a larger class of utility functions than the separa-

tion class is to restrict the probability distributions of security returns

in some way.''%%*

*Hart [1975], p.615.
#%Thid, p. 616.

*%%Tbid, p. 616.
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It is possible to interpret our theorem as yielding a comparative statics
property that holds for the class of non-increasing absolute risk averse
utility functions when the returns to different risky assets are restricted
to be independent. The non-increasing absolute risk aversion class includes
many utility functions not in the separation class, but it does not include

the quadratic utility functionms for which the separation proverty holds.

For the purpose of making this interpretatiom, suppose that there are
two risky assets and one safe asset in which wealth can be invested. Assume,
furthermore, that the amount invested in the first risky asset is fixed in
advance; i.e., suppose that all investors are restricted to holding pertfolios
which include exactly this predetermined amount of the first risky asset.
Such a situation can be idéntified with the formal model of the present paper
if we let & vrepresent the wealth which remains available for investment in
a portfolio containing the safe asset and the second risky asset and if we let
y be the random income yielded by the amount invested in the first risky as-
set. In this interpretation, X is the random return on the second risky
asset and B(X,y) is that part of & which is invested in this asset. The
theorem now can be interpreted to assert that if there are one safe and two
risky assets with independent returns and if the amount invested in one of
the risky assets is fixed in advance, then a more risk averse investor-will
invest less of his remaining wealth in the other risky asset. This result
will, of course, only apply if one of the utility functions under considera-
tion exhibits non-increasing absolute risk aversion. When this condition
fails, the example of Section 2 can be interpreted to show that, for more
risk averse investors, the amount of wealth invested in the second risky asset

is not necessarily a smaller part of the wealth that is uncommitted to invest-
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ment in the first risky asset.

As mentioned in the footnotes to the preceding discussion, Ross [1979]
treats the questions dealt with here in a slightly different context. He
assumes that x and v are uncorrelated in the strong sense that E[ily] =
0, for all y. .If we had restricted our aﬁtention to cases in which Ex = 0,

any ; satisfying our hypotheses would have satisfied those of Ross. Our
analysis can thus be interpreted as applying to a smaller class of pairs of
random variables (%,;) than the class to which Ross' analysis applies,

Ross' results parallel those presented here but they do not overlap. In par-
ticular, he presents an example, analogous to the one in Section 3 of this
paper, in which uy is more risk averse than u, but wl(i,§) < nz(i,§)

when E[i]y] = 0 for all y. His example cannot serve, however, as an illus-
tration of the point made by our example; viz., that even if X and y are
independent and ug is more risk averse than Uy nl(i,}) may be less than
wz(i,ﬁ). Ross' example 1s inappropriate for that purpose because it is not a
case in which x and y are independent. Since the utility functions in
Ross' example are from the constant risk aversion class, his example does
serve, however, to illustrate the fact that our Corollary 1 cannot be extended

to apply when E[ily] =0 for all y, even if u, and/or u, exhibit non-

1 2

increasing absolute risk aversion.

Ross' main theorem gives conditions under which u; more risk averse
than u, implies wl(i,ﬁ) > wz(i,§) when E[x|y] = 0 for all y. In fact,
he characterizes the relationship which must hold between uy and u, if
wl(§,§) is to exceed wz(i,ﬁ) whenever x and § are such that E[ﬁly} =0
for all y. Because of the constant risk aversion of the utility functions

in his example, the conditions imposed on the utility functions are necessarily

stronger than those imposed in our theorem. The necessity for stronger restric-
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tions on the utility functions arises in Ross' analysis because his theorem
applies to the class of random variables x,y for which E[x|]y] = 0 for all

v. As already mentioned, this is a wider class than those which are indepen-

dent and for which Ex = 0.
The contrast between Ross' results and our own is somewhat surprising

in light of the apparently small difference in the statistical relationship
between x and § permitted in the two analyses. 1In this connection, it
may be useful to emphasize that, in this paper, the function V, defined by
eqution (8), plays a crucial role. This is possible because x and y are
independent. When x and § are not iridependent, however, the Proposition
of SectionZ above will no longer hold even if x and ¥ are uncorrelated
in the strong sense that E{§|y] = 0 for all y. As a result, the function
V is irrélevant if x and ; are not independent even if thev are uncorre-

lated in the strong sense used by Ross.
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