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Ordering risky options is carried out mainly in the well-known
Mean-Variance framework, which was developed by Markowitz [8], [9] and
Tobin {11]. Employing the mean-variance rule, one must make some
assumptions either with respect te the investor's utility function (i.e., a
quadratic utility function) or to thé shape of the statistical distribution
of the risky options. Stochastic Dominance rules, on the other hand,
require very weak assumptions with reépectnto the investor's utility function
and no assumptions at all on the distribution functiéhs. 7first, seébnd,
and third degree stochastic dominance (FSD, SSD and TSD) have been developed
by Quirk & Saposnik [10], Fishburn [2]{ Hadar & Russell [3], Hanoch & Levy
[4), VWhitmore [12], and others.

In a recent paper, Levy & Kroll [7] extended the stochastic dominance
rules to the case where the investor can mix each of the two risky options
under comparison with a riskless asset. The technical difficulty with such
an extension is that once all mixtures of the riskless asset and the risky
option are permitted, there is an infinite number of comparison to carry
out. In [7] Levy and Kroll present a way of circumventing this difficulty,

and show that in fact only one comparison is required.

* University of Pennsylvania and the Hebrew University of Jerusalem, Israel.

#**The Hebrew University of Jerusalem, Israel.



In the present paper we develop multiperiod, first, second and third
degree stochastic dominance with riskless assets. The investor is assumed
to maximize the expected utility defined on his terminal wealth but he is
allowed at the end of each period to decide on the optimal proportion
invested in the riskless asset. Thus, if Xys¥X,...X stand for the returns
on the first option in n periods and Yy Ype ooV, denote the returns on the

second option, we develop in this paper conditions for dominance of, say,

n
. xi(ai) over 121 yi(ﬁi) where,

nap

i

xi(ai) and yi(Bi) denote combinations of the risky options and the risky

assets, e.g. xi(ai) = o.x, + (l-ai)ri whén r, stands for the return on
riskless asset in period i. Note tﬂét we do not assume a constant interest
rate in each period, hence we use r, rather then r for the interest rate.
Levy [6] developed conditions for dominance of

n n

nm x. over n y.

i=1 * i=1 *

namely, of one multiperiod distribution over the other when investing in the
riskless asset is not allowed. Thus, this paper can be conceived either as
an extension of the paper by Levy and Kroll (which deals with one-period
stochastic dominance with a riskless asset) to the multiperiod case, or as
an extension of the multiperiod paper by Levy to the case where investment
in riskless assets iﬁ each period is allowed. In the next section some
definitions and a brief review of theorems that we shall use in this paper
are given. The conditions for multiperiod dominance with a riskless asset
are given in section ITI. Concluding remarks and suggestions for further

research are given in section IV.



IT Definitions and A Review

Let F (X) and G(X) be the cumulative distributions of two risky options
with density fuactions f(x) and g(x), and let r stand for the riskless
interest rate. Denote by Xa the mix of the random variables X and the
riskless interest rate, X, =0 X+ (1-¢) r when 0 < ¢ < 11, {Fa} and {Gu}
stand for the infinite sets of all combinations of F and r and G and r,
respectively.

We deal in this paper with three classes of utility functions
Uk(k =1, 2, 3), where Ut U1 if U' > 0; Ue U2 ifU' >20and U" < 0 ;

and Ue Uy if U' > 0, U" < 0, and U'"" > 0.

The decision rules appropriate for the classes Uk (k =1, 2, 3) are
known as first, second and third degree stochastic dominance (FSD, SSD and TSD,

respectively).

Theorem 1: Let F and G be the cumulative distributions of two distinct,
uncertain options X and Y. Then F dominates G (FDG) by FSD, SSD, and TSD,

denoted by FDlG, FDZG, and FD3G, respectively, iff,
(1) F(x) < G6(x) for all x FSD

X
(2) JI6(t) - F(t)] at > o for all x SSD

X v
(3) J J I6(t) - F(t)] dtdv >0 for all x and EF(x) Z'EG(x) TSD.

-0~
(Recall that at least one strict inequality must hold in all cases).
For proof of FSD, SSD and TSD see Quirk and Saposnik [10], Hadar and

Russell [2], Hanoch and Levy [4] Whitmore [12] and others.

We would like to avoid the trivial cases when 0=0 and a=1 which imply
that the investor does not diversify between the riskless asset and the
risky asset. Also note that a>1 is mot permitted in the multiperiod frame-
work. If a>1, one may get a negative wealth at the end of a given period
wvhich makes the reinvestment procedures meaningless.
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Theorem 2: Let F (x) 2nd G (x) be two n-period cumulative distributions
n
(i.e., the distributions of I xi). Then a sufficient condition for
i=]

E U{x) >E U(x) for all Us © (k =1, 2, 3) is that F.DkG. for all
o co k > R |

periods i, i =1, 2,...n, for k = 1, 2, 3, respectively. {when Fi and Gi
are the cumulative distributions in period i)

For proof see Levy [6]2

Definition: We say that the set {Fa} dominates the set {Ga} if for every

element Gﬁ € {GB} there is at least one elemeﬁfniu £ {Fa} which dominates

it.

Theorem 3: {Fa}Dk {GB} (k = 1,2, 3) if and only if there is at least

one 0 < o such that Fa Dk

G (k =1, 2, 3). For proof see Levy & Kroll {7].
Using the above definitions and theorems let us turn to the investigation

of the multiperiod stochastic dominance rules with riskless assets.

IIT: Multiperiod Framework

We will start by proving some claims concerning the two-period case,
and then by induction generalize our results to the n-period case. We
first derive the multiperiod distributions of terminal wealth, and then use
the derived density function in order to derive the expected utility of the
terminal wealth. The expected utility formula is then employed in deriving
stochastic dominance rules for the multiperiod case when investing in riskless

assets in each period is allowed.

2Levy proved this theorem only for k = 1, 2. But the extension to

i=3, i.e. for TSD, is immediate. Also see Huang, Vertinsky, and
Ziemba [5].




Let us assume that in period i the investor invests (l-ui) of each

dollar in the riskless asset, and o, in the risky asset (0 < a, < 1)

Let,

-]
]

the rate of return on the risky asset in period i

H
|

= the rate of return on the riskless asset in period i (the

riskless interest rate).

Thus in period i, the return on a combination of the risky asset and the

riskless asset is, therefore:

] 1
1+ (1 - ui)ri + uiRi (a1 - ai) (1 + ri) + ai(l + Ri)‘

Denote, 1+R, =X

fd
+

la
|

=z (one plus the rate of interest)

Thus, the final weaith at the end of period i, resulting from the investment

of one dollar at the beginning of the period is given by:
Zi(a) = (1 - ai) r, + aixi
From these definitioms it is obvious that 0 < Xi <@

i - <
while (1 ai)ri < Zi(ui) < @

For the first and the second periods this definition turns out to be:

Zl(ul) {1 - al)r1 + alxl

22(02) (1 - az)r2 + o X

272



Hence, the cumulative distribution of the terminal wealth Zl(ul) . 22(02)

is given by:3

@19

F (x)

Pr{Zl(al) . Zz(az) <x} =

™ x/tl . (ul)
(1-a)r; (-a,)r, 1

(a,)
(tl)f2 (tz)dtldtz

where f1 and f2 are of the desity functions of X, and x, respectively and

fl(ul) and fz(“z) are the desity functions of Zl(al) and 22(02), respec-

tively. Thus, the last equation can be rewritten as follows,*?

o, ® (o) o
@ FU = F, 23 g e
(1 -~ a)r 1
1°71
(o))
However, by definition of the cumulative distribution F2 (E_) and the

1
cumulative distribution of the risky asset F2 we obtain the following

relationship:

3Throughout the Paper we assume that rates of return are independent over
time.

Note that the forumulas are developed for a., o, > 0. However, all
the results hold also for the case oy = 0, a, = 0. FoOr example, if oy = o,
we get

Pr {r1 . [(1-(!2)1:2 + a2X2] <x}-=

- P X < x/r1 - {1~ qz)r2 L =F ¢ x/r1 - (1 - az)rz)
2 - a, 2 a,
If both a, = &, = 0, the result is r, * r, with certainty. However, we

are interésted in this paper in a caSe whére diverification between
the riskless assets and the risky option takes place. The preceeding
forumulas are for a., @, > 0. However, as we shall see below, all results

»
hold also for a, = 6 analor o, = 0.



(02) X X
(5) Fz (E;) = Pr{(l - az)rz + azxz 5 E; } =
X X
t. -(1-a.)r t, -(1-a.)r
= Pr {xz < 1 . 2°72 } = Fz ( la 2772 )
2 2
(o)) ty-(-e)r,
Similarly, Fl (x) = Pr {(1 - al)rl + alxl < tl} = Fl ( T)
Hence the density function of zl(al) is given by, S
t,-(1-a)r
1
(a,) ¢or
) f(nrl)(t , - 8 F, () _3F o . (t{““"l)rl L
1 1 e tl 2] t1 1 dl 01
Substituting (6) and (5) in (4), ve get:
x
o, ,d o t, -(1-a.)r t,-(1-a)r
1 1771
(7)F12(x)=al f FZ(IG zz)fl(T"fo—)dtl
1 (l-al)r1 2 1

In the same manner, the general n-period probability distributon function is:

(a,,0,...0 ) ) M (a.) (a ) '
8 F 12 vy oo £, (). f, e ) dt,...at_
(l—al)r1 (l—an)rn

) n-1
where M = x/ 1T t.
i=1




However, since the cumulative distribution of the ith period is given by,

(e)
i _ -
Fs (t;) = P {1 - a)r, +oX < t.}=
t.-(1-a.)r.
_ i 171
B Fi( a. )
1
we have,
(ﬂi) 1 ti-(l-di)ri
£, 7 () = o £, ( a )

Therefore, equation (8) can be written as follows:

(a,,a,...0 ) o ) M- (1-a )r
(9) F 1 2 R I S S AU F_( y 2
1 n-1 (l-ul)rl (1- n—l)rn-l n
t, -~ (-0 )r t (1-a )r :
1 n 1 n~1 n -1
. f1 { a; ) . fn_1 ( a ) 1 dtl ...dt[1

Using the above formulae for the multiperiod density functions let us
turn to the expansion of the expected utility function U(X) ¢ Uk (k=1,2,3)
where EU is defined on terminal wealth.. We first start with the two-period
case, where the investor is assumed to maximize the expected utility defined
on his terminal wealth. We shall develop the expected utility formulae
>0and 1> a, > 0. However, in the case that either

1 2

,,0, or both are equal to zero, the results are straightforward, as we

for the case 1 > u

shall see below.

The two period density function is:



1) (a,,0,) /t, - (1-a,)
¢, ,o o x/t. - (1-a,)r
(10) 9 F < (x) g 172 (x) = . }a [ f £, ( 1 2772 )%_
12 (1-a1)r1 o, 1
t.-(1-a)r
1 17"
- £ ( a ) ]dtl

where fl(-) and fz(-) are the first and second period density functions,

respectively. Since oy <1 and o,

is given by (1 - al)rl(l - az)r2 <X<w

< 1, the range of the terminal value x

Thus,
® - (ag,0,)
(11) EU (X) = J U £ (x) dx =
(l-al)(l-az)r1°r2
- o x/t -(1~a,)r
= e g vl § g, (—A 22 L
172 (l—orl)(l-uz)r1 T, (l-al)r1 2 1
t,-(1-e,)rx
1 1771
. f1 (————E;————*) dtl] dx
Eqg. (11) can be rewritten as,
o ® : . x/t,-(1-a,)r
D EU (X) = —— (a v £, (—L—22
1 2 (I—ul)r1 (I—al)(l—uz)rl-r2 2

t.-(1-o,)r
g (L 1’1

1 o

)} de
1 1

Make the transformation %— =y, (with dx = tldy), to obtain:
1

).._
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] ] ® y-(l-ﬂz)rz
(13) EU (X) = — I LJu(ty - £ (—=-=) ay ].
%% (-ea)r,a, ! 2 o

171 "1 2
t.~(1-a)r
1 1’71
fq0—F—) dt,
1
_(l-al)(l-az)rl T,
where a. =
1 t
1
y-(1-a,)r,
Once again make the transformation, . "z (with dy = azdz)
2

to obtain,

(14) EU (X) = E% ( T )
l-a. )r
1

- £ (
1 al

tl—(l-al)r1

[Ju {tl(az_z + (1~u2) rz)} . f2 (z) dz] -
1 %2

)dt1

(l-al)(l-az)r r

172

where we define a

- (1-0!2)1‘2

Y

—(l-al)r

1

Finally, define, w

o

{with dt1 aldw) and make this

1

transformation in (14), to obtain,

=]

(15) EU(X)=[f [
0

where 2, is given by a

3

{ U {[(l-ul)r1 + alw][(l-az)r2 + uzz)]} . fz (z) dz]-
3

. f1 (w) d w

(1-a.)Y(1-a )r.r
1 27172 (l-az)rz

ety + (l-al) r
%

1




11

The lower limit of the second integral im (15) (33) is a function of
w. The maximal value of this limit, as a function of w, is reached when w
is minimal, i.e. wher w = 0. In this case, the lower limit is exactly 0.
For any w greater than zero, the value of the lower limit is negative. Since
for z < 0, fz(z) = 0%, we can substitute for this lower limit the value O.
As a final result, the expected utility defined on terminal wealth

is given by:

(16) EVX)=fJU {[(l-al)rl + oy w][(l—az)r2 + uzz)]}fl(w)fz(z) dwdz
00

where X is the terminal two pefiod wealth (X = [(l-ul)r1 + alxl][(l-az)r2 + aZXZ])

Note that formula (16) holds also for the case when a, = 0 or a, = 0

or both are equal to zero. For example, if o, =0, U (x} = U (r1 .

1
[(l-az)r2 + azle) and, EU (x}) =E U (r1 . [(l—az) r, ta, Xz]) =

(16a) = J U {(rl[(l-az) r, + uZXZ]} fz(Xz)dxz.
0

If both o = 0, and o

expected utility is U(r,-r.). We see, therefore, that equation (16) is
p y 1 T2 ’ F

5 = 0, we have the degenerate case and the

completely general for 0 < &, < 1. Substituting o, = 0 brings us to

1

equation (16a). Substituting both o, = 0 and a, = 0, results in U(rl-rz)

with certainty.

' Y'(l-ﬂz)rz x/tl-(l—az)r2
SNote that z = a = m since t, > (l-ul)r1 and
2 2
Ty, 22 0, and for all z < 0, f(z) = 0.

x > (1-a1)(1—a2)r1
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By similar means one can generalize the expected utility formula for

the n-period case:

(17) EU (X) = g e e g i {{(1—01)r1+aly1]...[(l—an)rn+unyn}}f1(yl)---fn(Yn)'

'dtl. . .dtn.
where Vy» ¥p-..y are random variables of the risky returns in the
corresponding periods. It is interesting to note that equation (16) {or

eq (17)) is symetrical; if one assumes statiomarity over time of the distri-
bution functions f1 = fz, and if the interest rate stays constant over

time Iy ¥ To then the optimal diversification strategy in each period is
also independent over time, i.e., o, = o, . An interesting issue is the
interrelationship between three factors: the distribution functiogs

fl’ f2..fn, the interest rates, Ty Tys oL, and the optimal

diversification strategy o a_, for various classes of utility

1° "2°""n

function. These economic issues are quite complicated and require a

o

considerable amount of space. Thus, we will turn to analyze stochastic
dominance conditions and leave the above mentioned issues to a separate
paper.

We shall use (16) in order to find stochastic dominance condifions
for dominance of one option over the other with riskless assets. However,
before doing so we need the following lemma:

Lemma:

Let: T(w) = f U {{(I-Bl) r1+B1w]°[(1—ﬁ2)r2+ﬁ22]}gz(z)dz
]

where gz(z) is some density function with gz(z) =0 for z < 0, Bl,ﬁz > 0.

IfU () ¢ Uk (k = 1,2, 3) then T(w) & Uk.
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Proof:

() T'(w) = Z U {1(1-B))r +B,wI[(1-B,)x,+By2]} B 1(1-B,)r, *B,z] g,(z)dz > 0
Since B,,B, > 0, U'(-) > 0 implies that T'(w) > o0.

(®) T"(w) = z U'{1(1-B))r +8,w) [(1-B,)r,*B,213 B21(1-B,)xr,+B,z)7 g,(z)dz < 0
Once again, U"(*) < 0 => T"(w) < 0.

(e T'''(w) = Z Ut {[(1-B,)r +B, w1 [(1-B,)r,B,2]} ﬁ";'[(l-ﬁz)r2+l322]3 g,(z)dz > 0

And by the same argument, if U''' > 0 then also T'''(w) > 0.

We use the expected utility as defined by (16) (and (17)), and the

above lemma is proving the dominance conditions given in the next theorem.

Theorem &
Let Fl’ F2 and Gl’ 62 be the cumulative distributions in periods 1 and

2 of the two distinct options, FA1'A2 B]’ az
distributions of the two-period terminal wealth when investing in riskless

}

and G stand for cummulative

assets is allowed. Then a sufficient condition for {F H p* {G
Al’A'Z Bl’ﬁZ

(k=1,2, 3, (0< Ai <1 and 0 < ﬁi € 1) is that there exist some

such that®
(a))
17k
F1 D 61
(a,)
F, 2 Dsz k=1, 2, 3.

8In the case of stationarity of the density function in all periods,
dominance in only one period implies dominance in the multiperiod case.



14

Proof:

We have to show that for each (Bl,ﬂz) 0 < B, <1 there exist (Al, AQ)

0 < Ai < 1, such that F2 Dsz (for k =1, 2, 3). We shall show

Apsh, BpsBy

that for each U{x)e U {(18) holds,

k

(18) E 2 U(x) > E 9 U(x).

F G

AI’AQ 31’32
By definitionm,
® 2

(19) E 2 U(x)= [ U (x) fA A (x) dx

FAIAZ (l-hl)(l—kz)rlr2 } 2
Using the definition of f we obtain

AIAZ
o ® x/t. -(1-A)r
B Ulx) = 5 v [ £, (— 522
AI’AZ 12 (1~A1)(1-}\2)r1'r2 (l-hl)r1 2
t.-(1-A)r
1 1771
© ®© t. -(1-A)rx
= T [ UG £, (—15—2~2) ax].
1 72 (I*AI)r1 (l—hl)(l—Az)rl,r2 | 2 :
t, -(1-A)r
1 1771, 1
Gy

Making the following transformation: EE = y we obtain,
1
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1 o o y-(l-?\z)r2
(20) E.2 U(x) = I [ J U(t,y) £, ( )dy) -
FAl’Az ARy e b ! 2 A
1 51 1
t.-(1-A))r
1 1’
f1 ( Al )]dt1
(1-A) (1-A.r. *r
vhere, b1 = tl 212

1

Recall that by the conditions of the theorem there are ay and a, such
(o) (o))
that F lland F dominate G, and G, respectively. Suppose now that we choose
1 2 1 2
() (B,)

arbitrary mixes Gl and G2 . e

Then choose Al and A, such that, A, = o

2

Then, equation (20) can be rewritten as,

y-(1-B,)r
2 2~ (-ayr,
. o B2
(21) E.2  U(x) = —2 I [ U (t,y) £ ( )dy] -
FAl’Az M-l b ! 2 %2
172 (1-A)ry by
t,-(1-B)r
1 1771 (l_ul)rl
B1
"« o Jat, .
1
Make the following two transformations:
y-(1-B,)r,
z = B?_ (Bzdz = dy)
t-(l-ﬁl)r1 :

and use the fact that Al = alﬁl and Az = “232 to obtain,
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_ 1 ® P .
(22) B2 U0 = o DT H1Q-B )Ryl [(1-B,)ry + Byz])
1272 1 72 (l-al)r1 b2
z=-(1-a,)r w-(1-a )r
272 1’"1
cf, (—————)adz] £, (— ) dw
2 a, S | | a
(1-2))(1-A ). x
1 2’"1f2 (1-z,

when b, is defined as b, =
2 2 B,

The largest value of the lower limit of the second integral is reached

when w is minimal, i.e. when w = (l-al)r . In this case; the value of the
z-—(l-dz)r2
%

we can substitute the value of the lower limit with (l-az)rz. After this

lower limit is (l-uz)rz. Since f ( ) =0 forz < (1 - az)rz,

substitution one can determine that the following inequality holds,

(23) B2 Ux) = - I U {{Q-B)r +B w] [(1-B,)r +B,2]} - -
FA].’AZ ql (1_a1)r1 (‘1'&2)1“2 1-71 "1 277272 02
z-(1-0.)r w-(1-a_ Jr
c £, ( —————EZ_—3~ ) dzl £, (——1) av
2 1
2 %I ({_a . [ g U {[(1-Br *B,w]-[(1-B,)r,*B 2]} g, (2) dz] -
1°71

w-(l-al)r1

-fl ( ) dw

o

Note that inequality (23) is straight forward once one shows that the

following holds,



17

o 1 z-(l-az)r2
(24) l{uz)::] [(2-By)xy + Bl (1-B,)z, + B, 2] % £, ( - )iz >

{ U I(1-B)r, + Bwl(1-B,)r, + By 2] g, (2) dz

(Since the other terms of both sides of (23) are identical).
However the above inequality stems from the second condition of the
a
theorem which asserts F2 szGz, and from the fact that
U [(I—Bl)r1 + ﬁlw][(l-ﬁz)r2 + 52 z] = U(-) ¢ Uk’ (k = 1,2,3) as shown
by the lemma.?

So far we used only one condition of the theorem. However, since

the second term of inequality (23) can be rewritten as,

@) = Tw £

where T(w) = fU {[(I-Bl)r1 + Bywll(1-B,)r, + B, 2] g, dz
0

and T(w) ¢ Uk’ k =1,2,3. (See the Lemma)

o
we can use the condition Fll DkG1 in order to conclude that, also the

following inequality holds,

- 1 [ w-(l-al) =
(26) — J T(w) £, (—= dw > JT (W) g, (w) dw
o 1 o - 1
1 (1-a)r 1 0
1°71
(ay) o
Since T(w)SUk and F1 D'G. However, since (see eq. {16))
@) z-(1-a,)r (o)
"Note that f (z) = —~ £, (——5—) and f (z) = 0 for all
2 a2 2 a2 2

vaules smaller than (1-o,) r.. Also note that since g,(z) is non-negative,
also the assertion of thé& lefima holds by substituting % for gz(z),.
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@1 f TCg () & = [ L0 LGB x#Byw) [(1-Byxyyzl} gy (w)ey(2) dw dz

=E 2 U(x)

8.8,

We can conclude from (24), (25) and (26) that for each By Bys

there exist Al and A2 such that,
E u(x) Z,EG U(x) for all UaUk {(k =1,2,3)

, B.,B
1°"2 17F2 Q.E.D.

Theorem 5

n . . . . .
Let Fa and G- be the cumulative distributions of n period
1°° % 1°° %
risks, where a. represents the proportion invested in the risky asset. A

sufficient condition for {Fz . ¥ {cz } (k = 1,2,3) is that
“"n

1 1...an
(@)
there exist o...¢ , 0 <a, <1 soch that F, “(a.)DG, for all periods
n - i - i i i

i=1, 2,...n, for k = 1,2,3 respectivity.

Proof: Let us choose vector 51,32...Bn which denotes the diversification

strategy of Gl’ G,...G_ and the riskless assets r .r . We have to show

2 n 1" ""n
that for each Bl,...,Bn (0 < Bi € 1,) which we select there exist
0 <A,...,A_ <1, such that F p¥6? , (k =1,2,3) The proof is
=M n = Aj--AC Ul B

o,
by induction. For n=2, we know from theorem (4) that Fi . DkGi for i = 1,2

implies that for each pair (BI’BZ) 0 < Bi < 1, there exists a pair (AI,AZ),
2 k 2

A, = a.B., such that F B G

i iti AIAZ BIBZ

terminal wealth. Let us assume that the theorem is true for n-1 periods, i.e.

when the superscript means the two-period
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(ai) K

Fi D Gi i=1, 2,...,n-1 implies that for each vector of B's

(Bl...Bn_l), 0< Bi < 1, there exists a vector of A's (Al...An_l), 0 < Ai <1,

such that Fn-l (t) Dan—1 (t), and A, = a,B.. We also know by the
A...A B.-..B i iti
1 n-1 1 n-1
(an) k
condition of the theorem that for some o_, F = DG . Thus it is given that8
- - a_)
Fo 1 \ p¥e? lﬁ ; and that ¥ 2 D¥G_ (for k = 1,2, 3), and ve
1" ""n-1 1" "Pp-1 a "
have to prove that F Dan ,(k = 1,2, 3)
A1"'An B1"'ﬂn
Let,
n-1 n-1 .
¢ E_g [(l-hi)ri + Aixi] ; ¥ =1 [(l“ﬁi)ri+ﬁixi]
i=1 i=1
n-1 n-1
FAI___A (8) =P { M [(-ADr; + AX;) <t} =P {p <t} =Fylt)
n-1 i=1
n-1 n-1
GBl __Bn_l(t) =P {illll(l—ﬁi)ri tAX] <t} =P {p<t } = Gy(t)

It is given (by the induction assumption) that F¢(t) Dka(t), for k=1,2,3

(a particular case where for the n-1 period distribution a=1, P=1 and hence

8Note by F_ we denote the n-th period distribution and by F® the n-period

distribution of terminal wealth. When ever we use an superscript to denote the

period this means a multiperiod distribution.
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(a )
A=af=1) and also that Fn n Dan. Considering F¢(t) and GW(t) as the first

period distributions we can apply theorem 4 and conclude that for each

pair (1, Bn) there exists some (1, An) (for the first period: al = 1 and

we take Bl = 1, getting Al = 1+1 = 1; for the second period a
2 k 2

27

ﬁz = ﬂn and An = Bn) such that: FIAn D Gan for k=1, 2, 3
Thus,
F;n (6) = Pr fo - [(A-ADr  +AX]<t]= Fil._..hn(t)
n k n

We can conclude from theorem (4) that F DG
(AI,AZ'.'AII) (Bl’ﬁZ""ﬁn)
(k = 1,2,3). This last assertion is true since by definition, the n-period
two random variables are given by
n n
-P. + pB.X. ] = - -A. X1 =
.H [ (1 ﬁl)r B1X1] ¥ {1 Bn)rn + Ban] and I [(1 hl)r + Alxl]

i=1 i=1

= ¢ [(1-A )r_+ B X ] respectively.
n’’n ‘nn Q.E.D.

Corollary

If one assumes a stationarity over time of the distribution of the risky

option and a constant interest rate in all periods, it is sufficient to

find F(;DG1 in order to conclude that {F: A} dominates the set
1°"""n
{Gg ... } by stochastic dominance of order k; where k = 1,2, 3.
R

In theorems 4 and 5 we established dominance conditions for multiperiod

distribution with riskless assets. The condition for multiperiod dominance
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is that there is domiance in each one period. However, there is no need to

(o.)

look for many values of ai in order to determine if indeed Fi 1 DGi' Levy

and Kroll [7] have shown that for the one-period case one inequality has

to be checked in order to determine if such ai indeed exists.

IV. Concluding Remarks

We investigated in this paper the relationship between one-period and
multiperiod first, second and third degrees stochastic dominance, when
lending at a riskless interest rate is allowed. The interest rate does
not have to be constant over-time. The general result is that dominance
in each period implies dominance in the multiperiod case. However, this
relationship does not work both ways and dominance in n-period does not
imply dominance in each period. It is possible that F" does not dominate
6" when riskless asset is not allowed, and by allowing to lend money at
some riskless interest rates Lys+-.r , one may find dominance among
various multiperiod mixtures of the risky options and the riskless assets.

Finally, this paper provides a framework for further research inves-
tigating the following economic issues:

(2) How risk-averters allocate their income between the risky options
and the riskless asset, when the riskless interest rate varies over time,

(b) What is the impact of change in the intial investor's wealth on
the allocation of his investment between the risky option and the riskless
asset, in a multiperiod framework.

(c) What are the multiperiod dominance conditions to specific
statistical distributions, e.g., normal distributions. Some of these
issues have been dealt with by Arrow {1] for the one period case. The
invetigation of these issues in the multiperiod framework is under

preparation,
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