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A MODEL OF THE PARALLEL TEAM STRATEGY IN PRODUCT DEVELOPMENT

by

Fred D. Arditti* and Haim Levy**

INTRODUCTION

In the late 1950's the idea of employing several teams to attack the de—
velopment of weaponry systems--—now known as the "parallel path strategy" of
development——-evolved at the RAND Corporation. This emphasis on exploring
several technological paths in the development of a product arose in response
to the recognition that the expensive part of research and development is not
the exploratory work but the latter part of the development process (See [5 ]
and [12]). This proved to be the strategy adopted in the early development
stages of the atomic bomb, where five independent teams at various universities
pursued the problem of producing large quantities of material capable of pro-
ducing a self-sustaining reaction. Similarly, the technique was widely applied
to the development of aircraft engines during World War I1, when it was found
that the best way to produce a good engine was to bring several different proto-
types to a practical demonstration as quickly as possible, choose that one which
exhibited the most favorable characteristics, and work intensively on the
selected model to turn it into an effective military device (See [L51}. In
later periods, the Soviet Union employed this management strategy in developing
their MIG fighters, while the United States brought this competition in team
research to the development of the Thor and Jupiter missiles. The approach has
also proved beneficial in cases where a central authority does not initiate the
formation of the several teams. The intial stages in the development of color
movies and television were undertaken by several private firms each following

its own plan.




While the idea's birth appears to have many fathers (See [12]), only one
individual, Richard Nelson {t1], can be credited with providing a framework in
which the costs and benefits of the paralliel path strategy could be analytically
studied. The problem considered by Nelson is that of achieving the development
of the project at minimum cost. His model assumes that n teams are selected to
work on the project up to some review point. When the review date arrives, the
performances of the teams are compared, and the team that looks best in terms
of successfully completing the project at minimum cost is retained while the
remaining n-1 teams are dropped. The basic assumption of Nelson's characteri-
zation of the parallel path model is that the cost of using several teams during
this initial stage is small relative to the benefits that accrue from the infor-
mation gathered, however, as development continues into later stages, the cost
of employing multiple teams increases disproportionately to the value of infor-
mation obtained.

The Nelson model does indeed explain many of the instances in which we ob-
serve a firm or government agency employing more than one team on a development
project. However, the model does not explain those cases where more than one
team work until development is completed or failure is conceded--failure ocur-
ring whenever the allocated development funds run out. Nor does it explain why
several teams may be employed even if the per team cost during the initial phase
is not low relative to the value of information gathered. Stimulated by
Nelson's work, we suggest in this paper another model that explains these
situations, and we analyze the factors important in determining the optimal
number of parallel teams.

We assume that the size of each team is optimal, and the only question

is how many teams should be employed in research and development (R&D) .




Obviously, when we determine the number of teams to be employed, we determine
the total optimal investment in R&D. This issue is crucial in considering the
government budget allocated to R&D as well as the amount of money invested in
R&D by the private sector. Just to indicate the magnitude of the investment in
R&D, note that in 1977, General Motors invested $1,451 million in R&D; and the
corresponding investment figures for other leading firms are respectively:
Ford Motor Company, $1,170 million; I.B.M., $1,142 miflion; and AT&T, $718
million.

Finally, we would like to mention that we suggest in this paper a rela-
tively simple model that can be extended in various directions; e.g., flow of
information hetween teams, égreement between competitors working on the dis-

covery of two or more products which either substitute or complement each

other, etc. Howevér, we believe that the simple model contains the main message
to which we would like to address ourselves,
IA. THE MODEL

The firm is searching for a new product. If the search is successful, the
discovered product increases the firm's net worth by its net present value, R. In
calculating R all costs to be incurred in the future production of the product
being developed are accounted for, except the costs of development, A dollars
per team, that are considered separately. Clearly R>0, since otherwise no at-
tempt will be made to develop the product.

Given that any team's chances of success are independent of the number of
teams used and that the prpobability of success is 1-q while that of failure is
q, how many teams should the firm employ during the development stage? If
only one team is employed, the expected dollar return, (1), is
(1) () = (1-q)R-A
where the development cost of A dollars is incurred with certainty. With two

teams the expected return, [(2), is the probability that at least one team will




succeed or one minus the probability of both teams failing, qz, times R, minus
the cost of using two teams. Formally,

2 M(2) = (1-gP)r-24

Suppose that employment of the first team is profitable, should we add a second

team? Only if the addition results in an increase in profit. That is, if i

(3) AT(1) = I(2) - M(1) = q(l-q)R-A >0
or
(3a) q{1-q) >-£-

Obviously, the lower the cost-to-present value ratio, A/R, the more likely

it is that a second team will be added. The effect of q on the decision to add

another team is rather more complicated, for, given A/R, a decrease in q does
not necessarily work in favor of increasing the number of teams. The reason is
that a decrease in q gives rise to two counterforces. On the one hand, one can
always increase the chances of success by adding a team.. The higher q is,
the more attractive this Strategy 1is bearing in mind that the increase in odds
must outweigh the added certain cost of A dollars. On the other hand, the lower
q is, the greater the likelihood that a single team will succeed, dictating
against the addition of a secondrteamffsincgrthe event "two or more teams dis~
cover the new product" yields the same return, R, as the event "only one team
discovers the new product." For q > 1 the former force domiﬁates in favor of |
2 i
increasing the number of teams, while for q < -% the latter force prevails.l
More generally, if there are n-1 on-going teams, the question of adding an

nth team is decided by

{4) ATl{n-1) = I(n) - N(n-1) > 0 i
where |
(5) I(n) = (1-q)R - nA

Substitution of (5) into (4) yields,

(6) AN(n-1) = qn_l(l—q)R—A >0



or

(6a) " la-g > 2

The critical point to focus on is q = (n;l)’ for if q is below this value then

a decrease in q works against adding the nth team while if q is above &Eﬁll

then a decrease in q tends to favor an increase in teams.

IB. THE OPTIMAL NUMBER OF TEAMS

If n* is the number of teams that produces maxinum expected return then
it is necessary that I(n*) satisfy
(7a) All(n*-1) = T(n*)} - II(n*-1) > 0O
(7b) ATl{n*) = M(n*+1) - N(n*) < O
Employing the relationship given by Equation (&), for thercases n* and n*-1,
the following must hold, if indeed n* provides the maximum expected profit,
(82) Rq™ 1(1-q) - & > 0
(8b) Rq™ (1-q) - & < O

Equations (8a) and (8b) imply that,

n*-1 A n#*
_— >
(%) R(1-q) ~ ¢
Noting that 1lnq < 0, then n* must satisfy
1 A 1 A
_ 1 A %
(10) (e Il o < 1+ (G Inkgrigy !

Condition (10) is sufficient for a global maximum, since the second differential
is everywhere negative. That is

(11) AZII(n) =AT(n) - All(n-1)

Rq™(1-q) - A - Rq" Y(1-q) + A

ka™ 1 (1-q) (q-1)
2 <

n-1
-Rq~ "(1-q) 0

[}

for any n.

From condition (10), the importance of q's size in determining the optimal

n is evident. We see that as q increases from zero, there is a point above




which 1nl[A/(R(1-g))] becomes positive,3 which in turn forces the upper bound on
n* to fall below one.4 In this event, the firm views the project as unprofitable
and no team is assigned to work on it. The above reasoning alse tells us that
for at least one team to be employed, we should have In[A/(R(1-9))}] < 0, namely

A/R(l-q)< 1, or R{1-q) — A > 0, that is the project must have positive mnet
present value.

Finally, recall that the optimal number of teams n* 1s the same under the
assumption of certain R and under the assumption that R is a random variable
when the firm's goal is to maximize its expected net present value. This iden-
tity becomes transparent once we recall that the net present value is
(l—qn)R - nA, and the expected net present value is given by (l—qn)E(R) - nA

(see eq. (5) and eq. (21)).

IC. THE CHANGE IN n* DUE TU PARAMKTER CHANGES

Let us turn to the analysis of the economic factors which determine the
optimal number of teams, n*. This analysis relies on the inequality given in

(10). Define,

1 A N | p—y
(lnq)ln[R(l-q)J B (lnq

From (10), the higher B, the higher n*. Therefore to uriderstand how a parameter

(12) B = )[1nA - 1nR - 1n(l~-q)]

change affects n*, one needs only study the effect of that parameter change on B.

As one suspects,

B 1 9B _ 1

4 —— = owm -

—_— = —
(13 53 " A - B R T R 0

An increase in per team cost or a decrease in project profitability tends to
reduce the optimal number of teams.

With regard to a change in ¢

9 [10q)2 e T e Ramp




3 .
So the sign of ag'is determined by the sign of the bracketed terms. Because we

assume the project is expected to be profitable for at least one team, i.e.,

R{(l-q) — A > 0, then

1 A
-dnA 150
q R(l—q)]
but
1ng <0
(1-q)
Therefore the effect on n* of an increase in g is ambiguous. The best one can
*
do is state the condition under which %g— > Q. From (l4), the condition is
A
15 «1nq - (1-q)lnl=—="—=] > 0
or
R(1- -
(1o) qq[——-——‘l-(A 1lma 5

II RISK ANALYSIS

Even if a team is successful in development, the final product's future
income is a random variable, comsequently the product’'s present value, symbolized
by R in previous sections, can no longer be assumed known but must be considered
a random variable. This uncertainty with respect to the payoff from successful
development constitutes one type of risk. The other risk associated with
product development is that none of the n* teams will succeed and no new product
will be forthcoming. When the above risks are explicitly considered, what con-
stitutes an optimal stragegy? We analyze this issue by employing stochastic
dominance criteria and the well-known mean-variance rule.

ITA. STOCHASTIC DOMINANCE ANALYSIS

In this section we make use of two theorems on ordering preferences under
risk. Both theorems have been grouped under the heading of stochastic dominance.
We begin by defining new notation, state the two theorems, and then proceed

with the analysis.




Without loss of generality we assume that the firm faces a decision of

employing either n or n, teams; where n, » n, - ‘We refer to a

decision to employ 0y teams as strategy 1 and to a decision to employ n,
teams as strategy 2. The net income from an investment in K&D is a random

variable which we denote by y, Futhermore, denote by Fl(y) and F2(Y)’
respectively, the cumulative distribution functions of the net present value of the

random variable, y, induced by employing n, or m, teams.,

First Degree Stochastic Dominance (FSD): Given two cumulative probability

distributions FL and F2, strategy 1 will be preferred to strategy 2 by every
expected utility maximizer, independent of the convexity or concavity of the
utility function, if and only if Fl(y) ﬁ_Fz(y) for all values v, and for at
least one y value the strict inequality Fl(y) < Fz(y) holds. For proof of FSD
see [2}, 131, [13].

Second Degree Stochastic Dominance (58D): Given two cumulative‘probability

distributions Fl and Fz,

expected utility maximizer with a concave utility function, if and only if

strategy 1 will be preferred to strategy 2 by every

y
1 -
- [Fz(t) Fl(t)] dt > 0
for all y, and the strict inequality holds for at least one y value. For proof
of SSD see [11, (2], (3}, [14].
Assume that the probability density function of the project's present value -

excluding development costs is given by

0 R=<0

where

[<+] o

Jg(R)dR = [h(R)dR = 1
0

-_—




If a development program using n teams is unsuccessful, that event having
probability qn, then the project's net present value, y, equals -nA; on the
other hand if the program is successful, the probability of that event being
l—qn, then the y random variable is R-pA. Since the event "success" or
wfailure” of the development process is independent of the present value random

variable, R, the net present value, y, can be described by the following

~
mixed distribution5 0 y < -nA
(18) £y = 4 y = -nA
(14" yh(y+nA) y > -nA
.
The cumulative distribution of y under the general strategy n is then
given by
—
0 y < -nA
n
(19) F(y) = J\ q y = -nA
¢ +(1-qMH(yma) ¥ > A
where L,
R
H(y+nA) = H(R) = [ h(t)dt
0

As n increases, —-nA decreases and the entire distribution F(y) shifts to
the left. Moreover qn decreases (since q <1) and l—qn correspondingly increases.

Consider three alternative strategies ns n, and n, where ng >n, >n,. Using

{19) we plot the corresponding cumulative distributions in Figure 1. As we see
from Figure 1, no strategy can dominate & strategy with a lower n either by FSD

(since FL(_HZA) < Fz(—n2A) and Fz(—n3A) < F3(~n3A)) or by SSD (since
-nlA _ —nzA
J [Fl(t) - Fz(t)] dt < 0 and I [Fz(t) - F3(tndt < 0)., However,a given

i —o0

strategy n may dominate a strategy with a higher n. Figure 1 illustrates a case
where strategy ny dominates n, by FS8D since Fl(y).i F3(y) for all y and a strict

inequality obtains for y > —n3A. Strategy n, may also dominate n, by SSD but

1
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not by FSD (since the two cumulative distributions Fl and F2 intersect.) The

only way to determine whether strategy n, dominates n, by SSD is to calculate

the (algebraic) area between the two curves, i.e., to apply the SSD rule directly.
In order to calculate the relevant area one has first to find ali the

intersection points between the two cumulative distributions under consideration.

In Figure 1, we demonstrate a case where F2 and F1 intersect only twice. 1In

this case, if the negative area wﬁich is between —nlA and Yo is smaller than

the positive area between the two cases over the range (—nzA, -nlA), we can

conclude that Fl(y) dominates Fz(y) by SSD. Though for some distributions of

R (e.g., a uniform distribution) it can readily be seen that either there is

no intersection at all (e.g., F3(y) and Fl(y) in Figure 1), or if the cumu-

lative distributions cross, then there must be exactly two intersection points

(as for Fz(y) and Fl(y) in Figure 1), such assertion is not true in general, and

two cumulative distributions may intersect any number of times. Thus, in

general, in order to establish dominance one has to analyze the specific dis-

tribution of R in the relevant case. Finally if R is given such that there is
only one intersection between the two distributions under consideration, then
Fl(y) dominates Fz(y) by SSD if and only if the expected net profit by Fl(y) is
greater thap the expected net profit by Fz(y). Fl(y) dominates Fz(y) for all
concave utility functions since SSD is equivalent in this case to the simple
rule: the mean of Fl(y) is greater than the mean of Fz(y). In general, given
two distributions Fl’ F2 with mean values g My respectively, such that for
some ¥, < é; Fl §_F2 for y < Yo (and F1 < F2 for some y1< yo) and F1 2_F2 for '
y z_yo, then F1 dominates F2 (for all concave utility functions, i.e, SSD) if
and only if 11_3 W - (The proof of this statement is presented in [3], p. 371.)
Using some of the properties of SSD efficiency we can determine thé efficient
set of strategies. A strategy n, is included in the efficient set if there is no

other strategy which dominates it. First a necessary condition for FSD and S8D

. . 6
is that the dominated strategy have a lower expected return. Therefore, the
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strategy that provides the highest expected return, symbolized by n*, is un-
dominated. Does strategy n* dominate nny other strategy? Recalling the
reasoning used in previous paragraphs to prove that strategy n2(>nl) cannot
dominate n , we conclude by the same reasoning that n* cannot dominate (either

by FSD or SSD} any strategy n where n < n*, Thus, all the strategies n, < n*

are FSD as well as SSD efficient, in the sense thét there is no strategy which
dominates ay either by FSD or by SSD.7 What about strategies nj > n*? It is
obvious that there is no strategy nj which dominates any of the strategies ni_ﬁ n*,
since the cumulatjive distribution of nj starts further to the left than any
cunuiative distribution of ni. However, n* (or any other ni) may dominate one or
all distributions of nj either by FSD or by SSD. Such dominance is possible
since on the one hand n* is the strategy with the highest expected net present
value (this stems from eq. (10), since the analysis in the certainty case is
equivalent to ar analysis involving maximation of the expected net present value),
and on the other hand the cumulative distribution of n* starts farther to the
right than the cumulative distribution of nj. In order to see if such dominance
exists, one has to apply directly either the FSD or the S$SD rule and compare n¥*
with all other strategies nj. However, while all strategies n, < n* are FSD —
as well as SSD-- efficient, for nj > n* the efficient sets of strategies derived
by FSD and SSD rules do not coincide. Figure 2 illustrates such a possiblity
when the SSD efficient set is smaller than the FSD efficient set.

ITB, MEAN-VARIANCE ANALYSTS

Almost all of the risk-return efficiency analysis of economic decision making
has been done under more restrictive assﬁmptions: 1) the attributes of any risky
strategy are completely defined by the strategy's expected return and variance
of return; and 2) the decision maker views expected return favorably and
variance unfavorably.8 Wg now investigate what can be said about the n-efficient

set in mean-variance space.
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Since the return y from a strategy n is R-nA with probability (l—qn) and

-pA with probability qn, the expected dollar return y is given by

[=:]

(20) E(y) = (1-¢™ f (R-nA)h(R)dR - q"  (nA)
0
or
(21) E(Y) = (1-q¢™) [E®)-nal - ¢*(na) = (1-¢DE(R) - oA

The variance of 02(y) is derived as follows:

o

(22) o ()

JIiena-G-gMEGR) + nA) (1) RRR

+ [-pA - (1-gHE®R) + nal’q"

- =Y [ IR - E@®) "E(R) 1°h(R) 4R

+ - E®1°

= AR + [E(R)lzl(l-qn)q2n +q - Zqzn + q3n]

- A IP® + CE®IL ,
From the analysis in section IT we know that E(y) reaches a maximum at some

n, labelled n*. What about 02(y)? Partially differentiating cz(y) with respect

to n, we obtain

2
(23) D - q"(ang) [0F(R)+" E®1? + (1-qMq"(1ng) (R

(-4 1na] o2 (R)+q™(1nq) [E(R) 1 *[1-q"~q"]

or
2
(26) 390, o [ q"ing] oF(R+" (L) [E(®][1-24")

Since 1nq < 0 and qn < 1, the first term on the right hand side of (24) is
2::
positive while the second term is ambiguous; consequently the sign of agn s

in general, is ambiguous at any n. However, if [1—2qn] which appears on the

2
0
right hand side of (24) is negative then one can determine that —E§%21->0.

2
s s s 30 . y -
This implies that —‘5%22- > 0if 1< an or n In ¢ > 1n *%. Recalling that 1lnq is
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negative, the condition for a positive sign in (24) is n < (ln’)/(Ilnq). Thus,
what one has to do is to calculate the positive number 1n(%)/1n(q) which we
denote by n**, Compare n*#* to n*, which is the strategy with the higher expected
return. If n** > n* one can conclude that in the range n* < n < n*%, E(y) decreases
and cz(y) increases with an increase in n, and hence all the strategies of n
such that n* < n < n** are dominated by stragegy n¥.
If on the other hand we find that n** < n*, no further general progress
can be made toward the derivation of the n-team efficient set in E(y) - Gz(y)
space. Nevertheless given estimates of g, uR, and o_ one can obtain the efficient

R

(uy, Uy) set by a numerical analysis; the efficient set generated will, of course,

vary with the values of the q, uR, and 9% parameters,

ITI. CONCLUDING REMARKS

Working on research and development can be carried out by using many alter-
native production functions. However, in many cases the firm estimates the number
of people and the required resources needed bﬁ one investigating team for a pre-
determined time period. Looking at the costs and the potential revenues that
may result from discovery, the firm may decide to go ahead with the project. If
this is the case, should the firm add another investigating team? Assuming

certainty or that the firm's objective function is to maximize expected net

present value, we solve for the optimal number of teams that should be employed
and analyze the impact of changes in the relesant parameters on the optimal
number of teams to employ. Obviously, the higher the potential net present value !
of the new product, apart from development costs, and the lower the investigating
cost per team, the higher the optimal number of teams that should be employed.

The impact of a change in the probability of discovery of a new product by each
team on the optimal solutjon is somewhat ambiguous: because of counterforces,

given two projects, identical in all respects except in the probability of success,

it is not clear a priori which project should employ the larger number of teams.
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Extending the analysis to incorporate uncertalnty yields a range of
efficient strategies from which the firm should select (subjectively) the optimal
strategy. In this analysis we assume either risk aversion and use stochastic
dominance criteria, or that the firm works in a mean-variance framework. The
first screening of inefficient strategies under the above rules is function of
the estimated present value, the investigating cost per team as well as each
team's discovery probability.

Given a subjective function of the potential profit from the new discovery
(i.e., f£(R)), one can use it to derive more explicitly the SSD as well as the
mean-variance efficient sets of strategies, from which the firm's management
should select its optimal strategy and thus determine the optimal investment

in R&D.
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1. Note that the marginal profit induced by adding a second team is given by

A(Hl) = q(1-q)R-A. Thus, aA(Hl) = R(1-2q), which is always a decreasing
aq
function of q. However, for all q < %,7BQSH1) is positive and for all 4> %
amnl) is negative, which explains the 9 above two counterforces. In
aq

technical terms these two counterforces stem from the fact that q(1-q) is a
parabola, reaching its maximum at the value q = %.

2. This is true since the function qn_l(l-q) reaches its maximum at the value

q = Eil, (see also footnote 1).

3. This critical point is given by ¢ = 1 - (%), where %—< l-—otherwise the

project is not worth considering.
4. Recall that lng < 0.

5. Obviocusly,

e n n, . n n

J £(y)dy = q + (1-q") é h(R)dR = ¢ + (1-q ) = 1.
Recall that the net present value is y = R-nA, hence R = ytnA as stated in eq. (18).
6. Let u(y) =y, where u(+) denotes utility function, be a member of the class

of utility functions for which the FSD and the SSD theorems hold. If F. dominates

1
F, by FSD or SSD, then
2 +CD
+;by dFl > J dez. Thus ul i_uz is a necessary condition for FSD and S5D.

- — @
7. Since expected profit monotonically increases with n up to n* then by the
same argument used to prove that n* cannot be dominated by n < n* we know that

any two strategies n_ and n,, n < n, <n¥*, cannot dominate each other.

3 3 4




8. The mean-variance rule is quite convenient to apply. However, one can
safely apply this rule if one either assumes normal probability distributions
with risk aversion or quadratic utility functions. (See [8], [9], [16], [11]).
It is worth mentioning that in the quadratic utility case the mean-variance
criterion is only a sufficient rule. (See [4]). In a recent dispute with
regard to the theoretical validity of the mean-variance rule see [6], {18] and
on its empirical approximation to a maximization of a direct expected utility,

see [7].
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