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The literature of Economics and Finance is replete with time series
analyses of security markets data, which are performed using spectral and
cross-spectral methods.l These studies tend to differ from each other only
in that they analyze slightly different time periods or slightly different
vield and price data.2 However, in spite of the fundamental similarity in
method, the conclusions often differ markedly,

The stated goals of such studies are usually akin to: the discovery
of harmonics (cycles) in security market data and the discovery of lead-
lag relationships between series. In order to achieve these goals, the
typical study engages in what could be called "peak hunting" and "coherence-
rhase finding."

Peak hunting involves the process of estimating the power spectrum for
each of the series to be analyzed and then finding those frequencies which
appear to contain more power than others. A cycle corresponding to the fre-
quency containing the greatest power is then often ascribed to the series.

Coherence - phase finding involves the process of first, estimating the
cross-spectrum of two time series and then finding those frequencies which
appear to exhibit more coherence than others.3 A cycle corresponding to the
frequency containing the greatest coherence is then often ascribed to both
series. Then the phase angle at that frequency is examined to determine
lead-lag relationships.

Even though very similar data is being analyzed, the resulting peaks,
cocherences and phase angles seem to differ substantially from spectral
study to spectral study. However, it is really not sSurprising that these
substantially different results have been achieved when one considers the
fact that significance testing is eséentially non-esistent in spectral
analysis and that, more often than not, a strong a priori hypothesis does

not exist in these studies.



The general problems associated with not having a strong a priori
hypothesis to test when using spectral methods have been developed else-
where.5 However, in spectral studies of security markets, the implicit
2 priori hypothesis must be that cycles of undetermined length exist in
security market prices and yields. In order for spectral methods to be
appropriate, the cycles must be thought to be recurrent, and regular with
respect to chronoleogical time (e.g. a recurrent cycle of exactly 52 weeks
in length in weekly data).

There is a well accepted body of literature on the character of
security markets which suggest that they are efficient. In an efficient
market, after allowing for transactions costs, no such regular, recurrent
Cycles in chronological time could exist. If they did exist, arbitragers
would attempt to profit from a knowledge of their existence and in so do-
ing, insure that such cycles could not continue to exist. Given this per-
ceived weakness in the a priori hypothesis and the absence of signifance
testing in spectral analysis, one might conclude that previous spectral
studies of security markets have found frequencies that contain more, but
insignificantly more, power than others in the estimated power spectra.
Furthermore, in the absence of a significant cycle in two series at a given
frequency, any subsequent analysis at the coherence at that frequency is
irrelevant.

In other words, in the absence of an accepted significance test it
is only when the data appears to confirm a strong a priori hypothesis that

one should accept that there are cycles in the data. Given the literature



on efficient markets it is hard to accept that an a priori hypothesis
suggesting the existence of reqular cycles in chronological time is a
strong cne.

Spectral Analysis in Fundamental Time

As an alternative procedure to that outlined above, this paper will
propose a strong a priori hypothesis involving the existence of cycles in
security market prices and yields, in fundamental time rather than chron-
clogical or calendar time. This hypothesis will be tested using spectral
methods in a way that overcomes the objections specified above. The hypo-
thesis will be found to be confirmed for certain price and yield series.

The concept of fundamental time to be used in this paper involves the
assumption that because of market efficiency the simple passage of calendar
time is largely irrelevant in security markets. It is instead the rate of
expansion and contraction of economic activity as a whole that determines
the rate of expansion and contraction of security market prices and yields.
Thus, cycles in security market prices will be related to cycles in macro-
economic activity and these cycles in macroeconomic activity are irregular
in chronological time.

The idea of measuring time by the rate of occurence of fundamental
events, in order to uncover properties of a time series that may be hidden
when the series is sampled at regular chronclogical interwvals has been
more fully developed elsewhere.6 Recently the concept of "operational",
"transaction", or fundamental time has been used in empirical studies to
demonstrate subordinated processes which may go unnoticed if a time series

is sampled in calendar time.7



The general hypothesis to be tested in this paper is that certain
security market price and yield series are related to National Bureau of
Economic Research (NBER) cycles. Some of the series are assumed to be
essentially coincident with NBER cycles and others are assumed to demon-
strate lead-lag relationships with each other. However, since an exami-
nation of Table 1 reveals that NBER cycles are not regular with respect to
calendar time, it should not be expected that cycles in security market
prices and yields are regular with respect to calendar time.

This paper will present a new methodology which uses spectral analysis
in order to establish the existence of cycles in time series and in order
to demonstrate the existence of lead-lag relationships. However, the
methodology presented here will be shown to be more consistent with the
nature of cycles in economic time series than the methodology that has been
used in previcus studies.

NBER Cycles

The National Bureau of Eccnomic Research has defined five complete
{from peak to peak) business cycles that have occurred in the U.S. econcmy
in the post World War II era. The dates of these cycles, designated I

through V, are contained in Table I.

Table I
Cycle Peak Trough Peak
I November 1948 Octcber 1949 July 1953
I1 July 1953 BAugust 1954 July 1957
III July 1957 April 1958 May 19690
iv May 1960 February 1961 November 1969

v

November 1969

Nowvember 1970

November 1973*



*November 1973 is actually not the NBER peak for Cycle V. At the
time that this study was begun, the peak for Cycle V had not been determined.
November 1973 was chosen due to data availability. However the data does
not differ markedly from most early estimates of the cycle peak.

The length, in months, of the contraction and expansion in each of

these cycles is given in Table II.

Table IX
Cycle Contraction Expansion
I 11 months 45 months
II 13 months 35 months
IIT : 9 menths 25 months
Iv 9 months 105 months
v 12 months 36 months

Methodology

The basic, underlying method of analysis used in this paper is spectral
analysis. 1In order to adequately estimate a power spectrum, a large number
of observations is essential.8 In order to have sufficient observations it
is necessary that data be available at relatively short intervals over a
relatively long period. This is a problem inherent in any spectral study.

In this paper, the 25 years from November 1948 to November 1973 will
be studied. However, in addition to analyzing observations chosen at daily,
weekly or monthly intervals throughcut and testing for cycles in calendar
time, this study uses observations chosen at intervals which vary according
to the length of the underlying NBER cycle.

Fifty observations per NBER cycle, twenty-five per contraction and
25 per expansion, are used.9 Thus, 250 observations per series (five cycles

multiplied by fifty observations per cycle) are used in the fundamental time



apalysis of this study. Table III shows the time interval {in integer
number of weeks) per observation in each contraction or expansgion which

is to be used. While this sampling procedure may appear to be arbitrary,
it is important to realize that once one makes the assumption that markets
are efficient, this procedure is one step more formal than is sampling at
constant calendar time intervals throughout the series. 1In order to make
the procedure still more formal, one would need to be able to determine

different rates of change in economic activity within the expansion and

contraction of the cycle,

Table III
Cycle Contraction Expansion
I 11/25 months = 2 weeks 45/25 months = 8 weeks
IT 13/25 months = 2 weeks 35/25 months = 6 weeks
I1I - 9/25 months = 2 weeks 25/25 months = 4 weeks
v 9/25 months = 2 weeks 105/25 months =18 weeks
v 12/25 months = 2 weeks 36/25 months = 6 weeks

When the power spectrum is estimated for a time series with observa-
tions spaced as in Table III, a peak at a freguency of .02 cycles per ob-
servation or a cycle length of 50 observations, must be accepted as consis—
tent with the hypothesis that the time series in question contains cycles
corresponding to NBER business cycles.

Spectral and Autocovariance Analysis

The typical shapes for the autocovariance function and power spectrum
. . . . . 10
of an economic time series appear 1n Figures 1 and 2. The shape of the

autocovariance function indicates monotonically decreasing autocovariance
as the length of the lag increases. The shape of the power spectrum in-

dicates that virtually all of the power is concentrated at the lowest fre- .



quency. This spectrum indicates that a cycle longer than the time
span covered by the data produces the series of perhaps more likely, the
series is dominated by a time trend.

When trend in mean is eliminated from the series, generally the shape
of the autocovariance function remains as in Figure 1 with only a change in
scale. However, the shape of the power spectrum may change to something
more like Figure 3. Figure 3 indicates varying levels of power for differ-
ent frequencies. However, what is difficult to determine from Figure 3 is
whether frequencies containing more power than others, contain significant-
ly'more. If a strong a priori hypothesis exists, a peak which appears to
dominate other peaks and is consistent with the hypothesis might be inter-
preted as confirmation of that hypothesis.

Government Bond Yields

Weekly data on long term Government bond yields and Treasury bill

yields was collected from the Federal Reserve Bulletin for the time period

covering November 1948 through November 1973.ll Initially, every fourth
observation was then chosen to give 327 "monthly” (every four weeks) obser-
vations for each series. The autocovariance functicon and power spectrum
were then estimated for each of the two series.l2 Beth autocevariance
functions had the general shape illustrated in Figure 1 and both power
spectra had the general shape illustrated in Figure 2. As explained above,
these shapes might be expected given the dominance of the upward trend in
interest rates during the time period covered by the data.

The detrended autocovariance function and power spectra were then

. . 13
estimated for both series. The power spectra for both conformed to the



shape given in Figure 3. The power spectrum for the long term Govern-
ment bond series did not appear to have any clearly dominant peaks. How-
ever, the power spectrum for the Treasury bills series did appear to have
a dominant peak corresponding to a frequency of .017 cycles per month or
a cycle length of about 60 months. There does not seem to be any obvious
explanation for the existance of a cycle of 60 months or 5 years length
in Treasury bill yields. In the absence of an & priori reason for such a
cycle to exist, one is hard pressed to assess its significance.

Having established the calendar time relationships that exist in this
Government bond and Treasury bill yield data an attempt was then made to
isolate the fundamental time relationships. There exist a number of theories
regarding the relationship between interest rates and business cycles. For
example, it has been hypothesized that interest rates rise during an eco-
nomic expansion with increasing demand for credit, relative to supply, and
tend to decline during a contraction or recession. In order to find the
relationship between NBER cycles and long term Government bond vields and
Treasury bill yields, the procedure specified above for spectral analysis
in fundamental time was used. From the weekly interest rate data, obser-
vations were chosen at the intervals specified in Table ITI. This sampling
produced 250 unequally spaced (in calendar time) observations. The auto-
covariance function and power spectrum were then again estimated for each
of the two time series, but now using 50 lags.

Given the sampling procedure specified above, if a time series con-
tained a cycle corresponding to NBER cycles, one would expect the auto-
covariance function to appear as in Figure 4 and the power spectrum to

appear as illustrated in Figure 5. The autocovariance function in Figﬁre
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4 reveals relatively highly negative autocovariance at a lag of 25 obser-
vations or % NBER cycle. It also reveals relatively high autocovariance
at a lag of 50 observations or one complete NBER cycle. The power spectrum
illustrated in Figure 5 contains a relatively large peak at a frequency of

.02 cycles per observation or a cycle length of 50 observations.

However, the autocovariance functions of the Government bond and
Treasury bill yield series with 250 unequally spaced observations were
found to conform in shape to Figure 1. 1In addition the shapes of their
power spectra were found to conform to Figure 2. Tt should be remembered
that the underlying time series contain significant trend in mean. There-
fore, the detrended autocovariance functions and power spectra were estimat-
ed for the unequally spaced Government bond and Treasury bill yield series.
Both of the detrended autocovariance functions in fundamental time
were found to conform to the shape illustrated in Figure 4. The power spec-
trum for the detrended Treasury bill series in fundamental time was found
to conform to the shape given in Figure 5 with a definite dominant peak
at a frequency of .02 cycles per observation. The power spectrum for the
Government bond series was also found to generally conform to the shape
given in Figure 5 but the definite dominant peak was found to occur at a
frequency of .0l cycles per observation or a cycle length of 100 observations
{(i.e. two NBER cycles). This result may indicate that the long term yvields
exhibit a tendency to "skip" a cycle in their conformation to NBER cycles.
Thus, while data points which are 50 observations removed from each other
are related, there is a tendency for data points which are 100 observations

removed from each other to bhe even more closely related.



-10-

Using these results as an indication that Government bond yields
and Treasury bill yields are systematically related to NBER cycles, one
is then justified in examining the relationship between the two series for
leads and lags in their conformation to NBER cycles. Therefore, the (cross)
covariance function and cross spectrum were estimated for the unequally
spaced {fundamental time), detrended Government bond and Treasury bill
vield series.

If the two time series are coincident in their relationship to NBER
cycles, one would expect a graph of their {(cross) covariance function to
appear as in Figure 6. Figure 6 reveals relatively high covariance at a
lag of zero (coincident). In addition, it reveals relatiwvely high negatiwve
covariance at lags of + 25 and - 25 observations {} NBER cycle}) and rel-
atively high covariance at lags of + 50 and - 50 observations (one com-
plete NBER cvcle removed from each other.) If leads and lags exist
between the two series in their conformation to NBER cycles, one would ex-—
pect the peaks and troughs to occur at lags of other than -50, -25, 0 +
25, and +50 observations. However, assessing the existence of, and length
of, leads or lags from the (cross) covariance function is difficult and
subjective.

A preferable way to assess leads and lags between the two series in
their conformation to NBER cycles would be to examine the measure of co-
herence and the phase of the transfer function, at the appropriate fre-
quency, which are by-products of the estimation of the cross spectrum.

The coherence is analogous to the coefficient of determination and measures
the closeness of the relationship between the twe series at a particular

frequency. The coherence can be examined to help to confirm the existence



-11-

of a cycle of a particular frequency in both series. The phase of the
transfer function then measures the lead or lag at that frequency.

The (cross) covariance function of the unequally spaced {fundamental
time) detrended series for Government bonds and Treasury bills conformed
generally to the shape illustrated in Figure 6. The coherence at a fre-
quency of .02 cycles per observation was found to be .89, indicating a
strong relationship at that frequency. The phase angle indicated a lead
of between 2 and 3 observations {(remember these observations are not e-
qually spaced in calendar time)} for the Treasury bill yield series.

Thus, the empirical results for Government bond and Treasury bill
vield series indicate that:

(1) there is some evidence of a fairly long cycle (about 5 years)
in calendar time in Treasury bill yields.

{2} both long term Government bond yields and Treasury bill yields
appear to conform to changing business cycle conditions.

(3} there is evidence that long term Government bond yields con-
form more closely to NBER cycles every other cycle.

(4) there is evidence that Treasury bill yields conform to chang-
ing business cycle conditions before long term Government bond

vields are.

Term Structure Effects

The methodology developed in this paper could also be used to test
for a relationship between the term structure of interest rates as re-
flected in the shape of the yield curve, and busines cycles. As a pre-
liminary step and for a comparison of calendar time relaticnships with
fundamental time relationships, the term structure data could also be ex-

amined for cycles in calendar time. The term structure variable which was
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tested was created by substracting the Treasury bill yield frbm the
long term Government bond vield at each observation point from the

weekly series described above.

Every fourth observation was then selected which gave 325 "monthly"
observations covering November 1948 to November 1973.

The autocovariance function and power spectrum were then estimated
for this "shape of the yield curve" series using 60 lags. The autocov-
ariance function for the undetrended data (trend in mean should not be as
significant a problem here since one interest rate series is being sub-
tracted from another) did not conform to the shape given in Figure 1.
Instead, there was evidence of peaks in autocovariance at lags of 24
months and 48 months. The power spectrum did generally conform to the
shape given in Figure 2, but there was also evidence of a peak at a fre-
quency of .083 cycles per menth or a cycle length of about 12 months.

The detrended autocovariance function and power gpectrum were also
estimated. The autocovariance function again showed evidence of peaks at
lags of 24 months and 48 months. The power spectrum showed evidence of
beaks at frequency of .017 and .083 cycles per month or cycle lengths of
about 60 months and 12 months. Thus, both the autocovariance function
and power spectrum seem to suggest the existence of some sort of weak annual
component in the determination of the shape of the vield curve. This
might be explained by the seasonality in timing of Treasury cfferings.

In addition, there appears to be some evidence of a longer cycle which is

consistent with the 5 year cycle in Treasury bill yields suggested above.
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In order to test for the relationship between the term structure
of interest rates and NBER cycles, observations were chosen from the
weekly term structure data at the intervals specified in Table III. This
gave 250 unequally spaced (in calendar time) observations. The autocov-
ariance function and power spectrum were again estimated using 50 lags.
The autocovariance function was found to generally conform to the shape
given in Figure 4 and the power spectrum was found to generally conform
to the shape given in Figure 5, with a peak at a frequency of .02 cycles
per observation or a cycle length of 50 observations. When the detrended
autocovariance and power spectrum were estimated for the fundamental time,
term structure data, the results were essentially the same as the unde-
trended results.

Thus, a time series analysis of the term structure data reveals some
tendency for an annual component to exist when the data is analyzed in cal-
endar time. When the data is analyzed in fundamental time as (determined
by NBER cycles) it appears that the yield difference between long term
Government bonds and Treasury bills conforms to NBER cycles. An exam-
ination of the unequally spaced {in calendar time} data reveals that this
conformation takes the form of a definite tendency for this yield differ-
ence to be relatively small near the peak of an NBER cycle and relatively
large at the cycle trough.

Corporate Bond Risk Premiums

It has been popularly theorized that corporate bond risk premium should
. 14 . ,
be business cycle related phenomena. The theory is that during an ex-

pansion, when the economic outlook is favorable, investors are more willing

to invest in lower rated, riskier bonds than they are when the economic ocutlook
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is gloomy. This behavior should result in an increase in demand for
lower rated, relative to higher rated bonds during the expansion. There-
fore, the yield spread between lower rated and higher rated bonds should
narrow during the expansion. Conversely, during the contraction, the de-
mand for higher rated bonds should be relatively large and the yield spread
should widen.

In order to test for the existence of these relationships, weekly

data was collected from Standard and Poors Bond Guide on various yield

indices covering the November 1948 to November 1973 time period. In parti-
cular, the following six yield indices were collected: AAA Industrial Bonds,
BBB Industrial Bonds, AAA Railroad Bonds, BBB Railroad Bonds, ARA Utility
Bonds and BBB Utility Bonds. From these six yvield series, three risk premium
series were constructed by substracting the AAA yield from the BBB yield at
each observation point for each classification {i.e. Industrial, Railroad

and Utility.)

Observations were selected from these three risk premium series at
intervals of 4 weeks, which gave 325 observations per series. The autoco-
variance function and power spectrum were estimated for each of the three
"monthly” risk premium series using 60 lags. All three of the autocovariance
functions were found to conform to Figure 1 and all three of the power spectra
conformed to Figure 2. The three detrended autocovariance functions and
power spectra were then estimated. All three of the autocovariance functions
were again found to conform to Figure 1 and all three of the power spectra

again conformed to Figure 2. Thus, the analysis of the risk premium series
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in calendar time revealed no evidence of the existence of cycles in
calendar time.

Three unequally spaced (in calendar time) series were created by
selecting observations from the three weekly risk premium series at the
intervals given in Table III. This selection process yielded 250 obser-
vations in fundamental time for each of the three risk premium series. The
autocovariance functions and power spectra were estimated for these three
series using 50 lags. For the Industrial Bond risk premium series, the
autocovariance function conformed generally to Figure 1 and the power spec-
trum to Figure 2. For the Railroad Bond risk premium series, the auto-
covariance function appeard U-shaped as in Figure 4, while the power spectrum
appeared as in Figure 2. For the Utility Bond risk premium éeries, the auto-
covariance function appeared to conform to Figure 1 and the power spectrum
appeared to conform to Figure 2.

The detrended autocovariance functions and power spectra were estimated
for the three risk premium series. The autocovariance functions for all three
series appeared to be U-shaped as in Figure 4. This was markedly so for the
Railroad series and modestly so for the other two series. The power spectra
for all three series appeard to conform to Figure 5. However, the peak in
the power spectrum occurs at a frequency of .02 cycles per cbservation only
for the Railroad series and at .01 cycles per observation for the Industrial
and Utility series. This difference indicates that the three risk premium
series to tend to conform to NBER cycles but that sometimes the Industrial

and Utility series tend to skip a cycle.
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Given this evidence of the conformation of the three detrended risk
premium series to NBER cycles, the detrended (cross) covariance functions
and cross spectra were estimated for the fundamental time series taken in
pairs. BAll three of the (cross) covariance functions conformed to the
general shape given in Figure 6. However, this conformation was clearly the
closest for the (cross) covariance function of the Industrial risk premium
series with the Railrcad risk premium series. The coherences from the cross
spectral analysis were .51 for the Industrial and Railroad series, .65 for
the Industrial and Utility series, and .21 for the Utility and Railroad
series.

From the cross spectral results, an analysis of the phase angles at a
frequency of .02 cycles per observation revealed a tendency for the Railroad
series to lead the Industrial series by two observations, the Industrial
series to lead the Utility series by 4 to 5 observations, and the Railroad
series to lead the Utility series by 4 to 5 cbservatiocns.

Thus there does appear to be some conformation of corporate bond risk
premium to NBER business cycles although that conformation seems to be
stricter for Railroads than for Industrial or Utility bonds. Examination of
the data confirms that the ?remiums tend to be larger at the trough than
they are at the peak which is the form that one would expect, a priori, that
such conformation would take. There also seem to be lead and lag effects
which produce the (stronger) effect of business cycles on Railroad risk
premiums before the (milder) effect on Industrial and Utility risk premiums

occurs.
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Common Stock Prices

The literature of Eccnomic and Finance is replete with studies that
bresent a plausible link between business cycles and common stock prices.
One might assume that the value of a share of stock is the present value
of the cash flow that the investor expects to receive. Then, if an economic
expansion causes expected corporate earnings to rise faster than required
rates of return of shareholders, one would expect stock prices to be rel-
atively high during economic expansions and relatively low during contrac-
ticns.

As a preliminary step to testing for the existence of this assumed
relationship between stock prices and business cycles in fundamental time,
and for purposes of comparison, the underlying stock price data could be
tested for the existence of cycles in calendar time. As mentioned above

the efficient markets theory would suggest that no such cycles in calendar
time should exist.

For the purpose of these tests, weekly data (week ending closing
prices) on the Dow Jones Industrial Average was collected for the November
1948 to November 1973 time period. While the Dow-Jones Industrial Average
is technically not the best available indicator of overall stock price
levels, it is nevertheless the most widely quoted measure of stock market
conditions. From this weekly data, observations were chosen at intervals
of four weeks which gave 325 "monthly" observations. The autocovariance
function and power spectrum were estimated for this monthly series using
60 lags.

The autocovariance function was found to conform to Figure 1 and the
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power spectrum conformed to Figure 2. The detrended autocovariance
function and power spectrum were then estimated. Once again, the
autocovariance function conformed to Figure 1 but the power spectrum
was found to conform to Figure 3. From these results there is no

evidence of the existence of cycles in calendar time in the Dow Jones

Industrial Average as an indicator of overall market price levels.

Observations were drawn at the intervals given in Table III from the
Dow Jones Industrial Average weekly data. This sample gave 250 unequally
spaced (in calendar time) observations. The autoccovariance function and
power spectrum were estimated for this fundamental time series using 50
lags. The autocovariance function was again found to conform to Figure 1
and the power spectrum conformed to Figure 2.

The detrended autocovariance function and power spectrum were then
estimated for the fundamental time series. The autocovariance function
conformed to Figure 4 with a trough at a lag of 25 observations and a peak
at a lag of 50 observations. The power spectrum was found to conform to
Figure 5 with a definite peak at a frequency of .02 cycles per observation
or a cycle length of 50 observations. Thus, there is evidence from the
procedure developed in this paper that the Dow Jones Industrial Average also
tends to conform to NBER business cycles.

Business Cycle Sensitivity in Industries

The technique developed in this paper could also be used to test for
the relationship between the performance of various industries and NBER

cycles. In addition, through (cross) covariance and Cross spectral analysis
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lead-lag relationships between business cycle sensitive industries could
be identified.

Data on industry production and earnings are not available at suffi-
ciently short intervals (weekly) to be used in the procedure developed in
this paper. However, industry indices of stock prices are available weekly.
For example, Standard and Poors publishes weekly industry indices of stock
prices based on week ending closing prices.

At one level of aggregation Standard and Poor's has stock price indices
for the "capital goods" and'consumer goods" industries. 15 Weekly data for
these two industries was collected for the November 1948 to November 1973
time period. From these series observations were selected at four week
intervals. This sampling gave two series containing 325 "monthly" observa-
tions each. The autocovariance functions and power spectra were estimated
for these series using 60 lags. Both autocovariance functions were found
to conform to Figure 1 and both power spectra conformed to Figure 2.

The detrended autocovariance functions and power spectra were estimat-
ed for these series. Unexpectedly, the autocovariance functions were found
to be U-shaped and conformed generally to Figure 4. The capital goods series
seemed to have a trough at a lag of about 28 months indicating negative auto-
covariance there, and a peak at a lag of about 54 months. The consumer goods
series had a trough at a lag of about 27 months with negative autocovariance
at the trough, and a peak at a lag of about 49 months. The power spectrum
for the capital goods series conformed te Figure 3 but had a definite dominant

peak at a frequency of .0167 cycles per month or a cycle length of 60 months.
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The consumer goods power spectrum also conformed to Figure 3 and also

had a definite dominant peak at a frequency of .0167 cycles per month.
Thus, the detrended autocovariance functions and power spectra for the
capital goods and consumer goods stock price series indicate the existence
of a four to five year cycle in both series.

Observations were then chosen from the weekly capital goods and con-
sumer goods stock price series at the intervals given in Table ITI. This
procedure gave 250 unequally spaced (in calendar time) observations. The
autocovariance functions and power spectra were then estimated using 50 lags.
The autocovariance functions both generally conformed to Figure 1 and the
power spectra both generally conformed to Figure 2.

The detrended covariance functions and power spectra were estimated for
the two fundamental time series. The autocovariance functions conformed to
the shape illustrated in Figure 4. The trough occurred at a lag of 25 ob-
servations for the capital goods series with negative autocovariance at the
trough. The trough occurred at a lag of 25 observations for the consumer
goods series alsc but there was small positive autocovariance at that lag.
The peak occurred at a lag of 50 observations for the capital gocds series
as might have been expected, but occurred at 43 observations for the con-
sumer goods series.

The power spectrum for the capital goods series conformed to Figure 5
with a definite peak at a freéuency of .02 cycles per cobservations. However,
the power spectrum for the consumer goods series conformed generally to

Figure 3 with nc dominant peak at any freguency. Thus, the evidence from
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from the analysis of the capital goods and consumer goods stock price
series in fundamental time seems to indicate a definite conformation to
NBER cycles for the capital goods series but relative independence from
NBER cycle for the consumer goods series.

The procedure developed in this paper was also used to test for busi-
ness cycle sensitivity in industries at a more finely determined level of
aggregation. The industries analyzed are given in Table TV. Standard and
Poors publishes weekly data on indices of stock prices for each of the in-
dustries given in Table IV. This data was collected for the November 1948

to November 1973 time period.

Table IV
Group I Group II
Automobiles Chemicals
Building Materials Food
Machinery Railroads
0il Textiles
Retail Utilities

Steel

For the industries listed in Group I of Table IV observations were
selected at 4 week intervals giving 325 "monthly" observations. The auto—
covariance function and power spectrum were then estimated for each series.
In all cases, the autocovariance functions conformed to Figure 1 and the
power spectra conformed to Figure 2. The six series were detrended and the
autocovariance functions and power spectra were estimated again. Once again,
in all cases the autocovariance functions conformed generally to Figure 1.
In all cases except for the 0il stock price series the power spectra conform~

ed to Figure 3 with no dominant peaks. However, the 0il series did appear
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to have a dominant peak at a freguency of .008 cycles per month or a cycle
length of about 125 months. Thus, for five of the six series, there was no
evidence of cycles in calendar time. TFor the 0il stock price series there is
some evidence of a relatively long (approximately 10 years) cycle.
Observations were also selected at the intervals given in Table III for
all eleven series in Group I and Group II of Table V. This gave 250 un-
equally spaced (in calendar time) observations for each series. The auto-
covariance function and power spectrum were then estimated for each of
these eleven series in fundamental time using 50 lags. Of the eleven auto-
covariance functions, nine conformed generally to the shape of Figure 1.
The other two, Chemicals and Railroads, were somewhat U-Shaped as in Figure
4 with troughs at a lag of about 30 cbservations and peaks at a lag of
about 47 observations in each. All eleven of the power spectra conformed
to Figure 2.
The detrended autocovariance functions and power spectra were then es-
timated for the eleven fundamental time series. The results of the auto-
covariance analysis appear in Table V. These results indicate a tendency

for six of the eleven series to be sensitive to NBER cycles.



Seven of the eleven power spectra were found to conform to Figure
3 with no dominant peak. Three of the eleven, Automobiles, Building Mater-
ials and Railrcads, were found to conform to Figure 5 with a definite domi-
nant peak at a frequency of .02 cycles per observation. OCne series, 0il,
wag found to have a definite dominant peak at a frequency of .01l cycles per
observation. These finding indicate that four of the eleven series tend to
conform to NBER cycles. There seems to be some tendency for one of the four,

0il, to "skip" a cycle.
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Table Vv

Detrended Industry Autocovariance Functions in FPundamental Time

Series Conforms Trough at Peak at
-_— to lag of * lag of *
Automobiles Figure 4 27 47
Building Materials Figure 4 18 33
Machinery Figure 4 25 44
0il Figure 4 29 49
Retail Figure 1 - -
Steel Figure 1 - -
Chemicals Figure 4 28 48
Food Figure 1 - -
Railroads Figure 4 27 49
Textiles Figure 1 - -
Utilities Figure 1 - -

*Measured in number of observations in fundamental time.

Thus, analysis of the autocovariance functions suggests business cycle
sensitivity in six of the eleven industry series. The power spectra confirm
such sensitivity in four of the six., Those four series, in addition to the
capital goods series which was found to be busines cycle sensitive above,
were also analyzed for lead-lag relationships in their conformation to NBER
cycles by estimating the relevant (cross) covariance functions and cross
Spectra.

All of the (cross) covariance functions were found to conform to Figure
6. The peaks and troughs in the (cross) covariance functions are given in
Table VI.

The coherences and suggested lead-lag relationships from the estimated
Phase angles at a frequency of .02 cycles per observation are given in
Table VII.

The results from Table VIT tend to indicate that the order in which
these five stock price series are affected by changing business cycle condi-

tions ig:



-24-

Table VI

Peaks* and Troughs* in Cross Covariance of Detrended Fundamental
Time Industry Stock Price Series

Base Serieg Capital Goods Automobiles Bldg. Materials Railroads O©0il

Capital Goocds:
Peaks -50,-7,+47  -46,0,%33 -50,-4+48 -50,-1,+48

Troughs -30,+19 -22,+19 -27,+19  -28,+19
Automobiles

Peaks —47,+7,+50 ~50,0, +43 -47,0,449 -47, OF47

Troughs -19,+430 -19,+28 ~-25,+28  -27,+27
Building Materials:

Peaks -33,0,+46 -43,0,450 -41,0,+50 -38,-11, +48

Troughs -19,+22 -28,+19 -18,+19 -20,+30
Railroads:

Peaks ~48,+4,+50 -49,0,+47 ~50,0,+41 -47,0,+50

Troughs -19,+27 -28,425 -19,+18 -24,+25
Oil

Peaks -48,+1,450 -47,0+47 -48, +11, +38 -50,0,+47

Troughs -19,+28 -27, 427 -30,+20 -25,+24
*in number of observations lead or lag of other series on base series

Table VII

Coherence and Suggested Lead-Lag* Relationships at Frequency of
.02 Cycles per Observation in Fundamental Time

Base Series

Capital Goods Automobiles pldg. Materials Railroads O0il

Capital Goods:

Coherence .68 14 + 78 .64
Lead -5 -1 -3 -3
Automobiles:
Cohzrence .68 +11 .78 .81
Lea +5 i
By materials +5 coincident  +1
Coherence .14 .11 .19 .04
_Lead +1 -5 -3 -6
Railroads:
Coherence .78 .78 .19 .68
. Lead ++3 coincident +3 coincident
Oil:
Coherence .64 .81 .04 .68
Lead +3 -1 +6 coincident

*in number of observations; positive means base

. series leads, negative
means base series lags
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1. Automobiles

2 and 3. Railroads and 0il
4. Building Materials
5. Capital Goods
This order suggests that consumer durables are affected first by
c¢hanging business cycle conditions. ©0il and transportation appear to be
affected next, followed by building and housing and finally followed by
capital goods. There is no evidence that building is countercyclical to
the other series as has often been suggested. There is evidence however
that capital investment lags increased demand for goods and services. Of
course all of these suggested relationships rest upon the assumption that
stock prices reflect underlying economic conditions in the industry.
Summary
This paper presents a methodology for using spectral analysis in funda-
mental time. This procedure overcomes some very important objections to tra-
ditional spectral analysis. The procedure was used to test some widely held
beliefs about the behavior of security market prices and yields. The results
indicate that:

1. 1long term and short term Government security vields are influenced
by changing business cycle conditions

2. short terms yields are affected before long term vyields
3. rates tend to be high at the cycle peak and low at the trough

4. the shape of the yield curve is influenced by business cyecle con-
ditions with the difference between long term yields and short term
vields tending to be relatively small near the peak of a cycle and
relatively large near the cycle trough

5. Corporate bond risk premiums are influenced by business cycle con-
ditions, tending to be small at the cycle peak and large at the cycle
trough
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the Dow Jones Industrial Average is influenced by changing business
cycle conditions, tending to be high at the cycle peak and low at
the cycle through

certain industry stock price indices are influenced by business cycle
conditions and exhibit lead lag relationships in their sensitivity
to changing economic conditions.
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Appendix

Industry Stock Price Indices 1948-1973 (For details see Standard and Poors

Trade and Security statistics)

Capital Goods - approximately 120 companies from the following groups:

Agricultural Machinery Mining and Smelting

Building Materials Office and Business Equipment
Chemicals Printing and Printing Equipment
Copper and Brass Railroad Eguipment

Electrical Equipment Ship building

Fertilizers Shipping

Lead and Zinc Steel and Tron

Machinery Steel Alloys

Consumer's Goods — approximately 190 stocks from the following groups:

Apparel Motilon Pictures
Automobiles Paper Containers
Auto Parts Publishing
Beverages Radio

Cigar Manufacturers Rayon and Acetate varns
Cigarette Manufacturers Retail Stores
Confectionary Shoe

Containers Soaps

Drugs Sugar

Floor Covering Textiles

Food Products Tires and Rubber
Household Appliances Vending Machines

Automcbiles - approximately 4 stocks

Building Materials - approximately 20 stocks from the following groups:

Air Conditioning Heating and Plumbing
Cement Roofing and Wellboard

Chemicals =~ approximately 12 stocks

Foods -~ approximately 30 stocks from the following groups:

Biscuit Baking Dairy Products
Bread and Cake Baking Meat Packers
Canned Foods Packaged Foods

Corn Refiners
Machinery ~ approximately 25 stocks from the following groups:
Congtruction and Material Handling Speciality

Industrial Steam Generating
0il Well



0il ~ approximately 30 stocks from the following groups:
Crude Producers
Integrated bomestic
Integrated International

Railroad - approximately 25 stocks

Retail -~ approximately 30 stocks from the following groups:

Department Stores Mail Order and General Chains
Food Chains Variety Chains

Steel - approximately 10 stocks
Textiles - approximately 6 stocks
Utility - approximately 50 stocks from the following groups:

Electric Power Natural Gas Pipelines
Natural Gas Distributors Telephone

~-20~
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Footnotes -30-

Spectral Analysis is a statistical method which involves the
estimation of a power spectrum for a time series. The power
spectrum is a representation of a Fourier transform of the
autocovariance function. Heuristically, the power spectrum is

an autocovariance function in the frequency domain rather than
the time domain. There are many excellent references on spectral
analysis. For example see: Granger and Hatanaka (1964), and
Jenkins and Watts (1968).

A partial list of spectral studies of U.S. interest rates include:

Fand (1966), Sargent (1968), Melnik and Kraurs (1969) and Smith and
Marcis (1972). A partial list of spectral studies of the U.S. stock
market includes: Granger and Morgenstern (1963), Godfrey, Granger and,
Morgenstern (1964), Granger and Morganstern (1970), and Fleming (1973).

Heuristically, a cross-spectrum is a (cross) covariance function be-
tween two time series in the frequency domain rather than the time
domain. Coherence measures the similarity between the two series at
a8 particular frequency and can be inEerpreted in a way not dissimilar
to a coefficient of determination (R").

Given that a cycle of a given frequency exists in each of two time
series the phase angle measures how much out of phase one series is
with respect to the other in the frequency domain. This phase diff-
erence can then be converted into a lead or lag in the time domain.

See Percival (1971) and Perciwval ({(1975).

See Feller (1966) p. 133
See Clark (forthcoming) and Westerfield (1973)
See Granger and Hatanaka (1964) and Jenkins and Watts (1968)

For more details on sufficient observations see Granger and Hatanaka
(1964) and Jenkins and Watts (1968}.

Sece Granger (1966).
All bond yields are yields to maturity.

The estimation was done using program BMDo2T, Autocovariance and Power
Spectral Analysis, on the IBM 360 Computer at the University of
Pennsylvania,

The trend in mean in a series was removed by a least squares fitting
method as follows:

A =R - B =01
PX px
where i= o0, 1, . . . ., n - 1
n
g =5 xi (2-n+1) / ({({n-1) n (n+tl)) /&)
i=o

B=X-oa(n-1)/2



PX

DX
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is the autocovariance of series X after detrending at lag p

is the autocovariance of series X at lag p

is the number of discrete data points

See Sloan (1966} and Van Horne (1970) for example. This theorized

relationship is also presumably the basis for the so-called "'Barrons
Confidence Index" as a leading indicator.

See the Appendix to thig paper for a description of the industry stock
brice indices
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