Stability and Separability
The Role of the Stable Distributicns

in Portfolio Theory and Some Implications
for Multivariate Statistical Analysis

by
Stephen A. Ross

Working Paper No. 8-76

The author is grateful to the Rodney White
Foundation, the Guggenheim Toundation and to
the National Science Foundation, Grant #S0C74-
20292 AQl for their aid.

July 1976



The stable distributions have a long and somewhat checkered
capeer in finance. They were first introduced by Mandelbrot who used
them to study speculative price series. On the basis of statistical
criteria, the normal distribution did not appear to provide enough
weight in the tails to explain the outlying observations in
and Mandelbpat discovered that by using stable distributions with 2an
o parameter of less than 2, the parameter of the normal distribution,
these "fatter tailed" distributions fit better than the normal. Fama
lent further support to the statistical case for the stable distributions
and, as did Samuelson, developed some porifelic theoretic implications
when returns were stable, but not necessarily normal. Fama also
generalized the mean variance capital asset pricing model of Sharpe
and Lintner to the case where returns were generated by a multivariate
stable factor mecdel.

For a variety of reasons, though, the stable distributions have
not proved to be an altogether satisfactory generalization of current
mean variance financiallnédels. On an empirical basis, Clack has
demonstrated that as a pure matter of goodness of fit the subordinated
normal processes also generate the outlying observations in speculative
price data and, in general, outperform the stable distributions in
explaining the data. On theoretical grounds things are even worse.

The first difficulty noted with the stable distributions was that,

since they do not possess moments of order greater than or equal to their



parameter (0 < o < 2), von-Neumann Morgenstern expected utilities

would not exist for a number of conventional utility functions. Of

course, one can take the view that this is sc much the worse for

theose utility functions; but this perspective gets a bit cramped as

a declines to unity and one runs out of utility functions for which
expected utility exists (see Ross and Blume). Somewhat more significantly,
though, it was originally thought that the stable distributions would, in some
sense, be a unique generalization of the mean variance model of

financial theory, and this has proven to be incorrect. Ross has

completely delineated the class of distributions that permit such
generalizations and it is significantly larger than the stable class.

Nevertheless, the stable distributions de retain a tantelizing

appeal. Tor one thing they have canonical properties as the limit laws

of sequences of independent random variables. The famous Khintchine-Levy
theorem characterized the stable laws and they are easily shown to be the
only ones which can be the limit distributions for sums of independently and
identically distributed random variables (see Gnedenko and Kolmogorov). This
limiting property is suggestive in a context where prices are determined

by demand and supply conditions that are made up of a large number

of individual decisions, but within the context of neoclassical portfolic
theory there really is no longer any unique role for the stable
distributions.

The intent of this paper is to suggest a theoretical basis for
such a role. In particular, the stable distributions will
be shown to be the unique ones which satisfy a small set of simple

assumptions on portfolio behavior. In so doing, we will be able to



link up two important concepts in financial theory, the stable distributions

and portfolio separation--stability and gseparability for short. Section I

introduces these concepts and Section II proves the central theorems

linking them together. Section III considers extensions of these results

with some implications for multivariate statistical theory. Section IV

briefly concludes the paper with a discussion of unresolved issues.



I. Stability and Separability--Definitions

The purpose of this section is simply to introduce the two key
notions that will be used in the paper. The first concept 1s that of
stability and we will include some results from the theory of stable
law solely for the purpose of keeping the paper self contained. (These
results are taken from Breiman, Feller, and Gnedenko and Kolmogorov. )

A type of distribution function is a set of distribution functions
generated by changes of scale and location. If F(x) denctes a
distribution function then the type generated by F(x) is the class of
distribution functions of the form F{ax + b), where a > 0 and b are
arbitrary constants. For example, if we change the scale and
shift the location of a normal random variable, it remains normal;
hence the normalsg form = tyne A +vme e ralled stable if it is
closed under composition, i.e., a type is stable if the sum of any
two independent members of the type belongs to the type. Thus,
if Xy and x, are any two independent random variables in the same type,
the type is stable only if

X, TR, T Ry

is also in that type. To put the same thing iIn the form of distribution

functions, if Fla.x + bl) and F(a.x + b2) are the distribution functions

1 2

of Xy and X, respectively (al, a, > 0), then stability requires that there

exist constants ay > 0 and b3 such that F(aax + b3) is the distribution functicn
of Xy Since the sum of two independént normals is also normal, the
normal type is a stable type.

In a famous theorem, Khintchine and Levy showed that a distribution



function is stable if and only if the logarithm of its characteristic

function1 1s of the form

log f(w) = dyw - c|w|®{1 + iBTgT-m(W,a)}, (1)

where a, B, v and ¢ are constants,
-1l <8=<1,
c > 0.
The o parameter which tells the highest absolute moment possessed by
the distribution function (except for a« = 2 which corresponds to the
normal distribution which possesses all moments) belongs to the interval
Lo, 21,

and

tan —a if a # 1

bl ]

w(w,o) =
%10g|w| if a = 1.

Tue corstants in (1) have useful interpretations; y is a measure of location
the mean if the distribution has one (i.e., a > 1); o is a measure

of spread; and B is a measure of skewness, the distribution

being symmetric if B = 0. Unfortunately, though, while the

characteristic function (1) is easily displayed in closed form and although
a number of stable distribution functions besides the normal are known

explicitly, there does not exist any simple characterization of the form



of the distribution functions of the stable types.
The Khintchine and Levy theorem has a number of interesting

consequences. One we shall use is the following. If (= .,xn)

120
are identically and independently distributed (y = 0) stable random

variables with parameter a, then

X, ¥ +o0 + X,

a= n . (2)

In the normal case this iIs easy to see since Xyttt % is normal
. . 2 2. .

with variance equal to no~ (where ¢° is the variance of each xi), and

this is simply the variance of Jyn %:, and (2) may be verified in

general from (1;.



The seccnd major concept we will use in this paper is that of
separability in portfolio choice. It is well known, for
example, that in a mean variance'model with a riskless asset all
investors with the same probability assessment of returns will divide
their portfollos between the riskless asset and a common portfolio
of risky securities. Attitudes towards risk enter, +hen, net to
determine the composition of the risky portfolio, but, rather, only
to determine the amount of wealth placed in the riskless asset and
in the common risky portfolic. This sort of result is central to
much of modern financial theory and is called a separation property:
Ross (2) described those distributions which have the separation
property and discussed a variety of types of separation.

The mean variance example $1lustrates two fund separability
(2fs) in that all portfolios are divided between the common risky
portfolio and the portfolio containing only the riskless asset. FEven
simpler is the concept of one fund separability (1fs) in which all
risk averse expected utility maximizers choose the same one fund of
assets. Suppose, for example, that there are only *two assets with
returns X, and x.. From Ross (2) a necessary and sufficient condition

2
b

. 1
for the portfolio (E:E > 77D

) to be the optimal portfolio for all

{(prisk averse) investors is that

Bix, - x2|xl + bx,} = 0, (a.e.), (3)

where E denotes the expectation operator. The necessity of this result

follows from an  argument in the stochastic dominance literature, !



but the sufficiency is easy to see. Suppose (3) holds.

liet U be any

monotone concave utility function and & any portfolio alternative to

1 b
‘T T Yo
(€5 8,) = Gy 120 + (1, n)
1’ 72 1+b? l+b 1
defines (nl, nz) and nl + n2 = 0 since £ + 52 = 1 Hence
E.x, + £ x = 1 b + %z o+ b4
LT R TR R T T % TR TR,
1 1
= - S + g ( - .
5 1T o o lE Ry
Frem (3), then, Elxl + 52x2 is distributed as
1 b
— — +
b *1 * Tap %ot (noised,

b
and must therefore be inferior to the portfolio (1+b s l+b)
_ b
E{U[glx ¥ B X ]} E{U[l+b R (x - xQ)]}

= E BUIGE *, + 1o %, + 1,0 = %,)]
1 h it+b X 1+b 2
(T %t 1w %)
b
{U[l+b 1t T %ot

where we have used (3} and Jensen's inequality.

In the next section we will use the concept of cne fund
separability, as embodied in (3)

distributions.

R
1+ 1

Formally,

_b_
1+b 2

, to characterize the class of stable

1}



II. Basic Results

The main result of this paper is the following theorem and its generali-
zations which link the concepts of separability and stability.

Theorem 1: (A Two Asset Theﬁrem)

Let Xy and 2, be two independent random variables possessing

means. A necessary and sufficient condition for the pair (xl, axg)

to exhibit 1fs for all a > 0 is that Ry and X, are distributed as

mean zerc stable random variables which can differ only in scale,

i.e., they have commeon exponents o > 1 and skew parameter 8.

The pair (x axz) exhibits 1fs for all values of a iff %y and X,

1
are distributed as mean zero symmetric stable (B = 0} random
variables with commen o >1.

In other words, with indepencent assets the stable distributions are the

only ones which retain the separation property under changes of scale.

The proof of this theorem is not simple and it requires a bit of work.

The basic idea is to show that if xl and X2 are stable with a common o,

then (3) must hold and, conversely, that (3) implies that Xy and x, are

stable. The sufficiency part is gemerally thought to be well known,

but it is instructive to work it out in a somewhat different fashion than

usual. Notice that we require a > 1 simply to permit expectations to

exist. For a treatment of the esoteric case when o < 1 see Ross and Blume.
The primary results we need to prove sufficiency are (2) and the

following lemma which gives a set of conditions under which conditicnal

expectations are zero.
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Lemma;

Let RyaeeesX be independent, identically distributed

random variables. For any constants nl,...,nn,

n
Jn, =0, (4)

implies that

n n
L} on.x.] Tox.} = o, (5)
i=1 * ti=?t

Proof:
Consider all permutations, k, of (nl,...,nn). For any
such permutation

n n

ECIn, xl ] xd=c,
i=l i T i=)

independent of the permutation, k, since
X.,

ll

it ~19

i
can give no differential information about the individual
xi's. Letting # denote the total number of.permutations
and using (4) we have

I Inox ]
# ¢ = E{ n, x, x.}
| K ogop Ky gzl

T ]}
= E{ ) (} n, x. x,}
=1k KyP el
n n
= E{ ) (0)x,]| J x.}
i=1 * i=1
:0,,
hence
¢ =0

Q.E.D,
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Armed with this lemma we will prove the sufficiency part of

Theorem 1.

Proof of Theorem 1:

Sufficlency:

from (3) it suffices to show that for any a > 0
there exists a b (#-1) such that

E{x. - ax,|x

: + be} = 0,

1

the symmetric case follows since xj and —xj are

identically distributed.

o
: 1
Suppose first that the quantity 4T is rational,
and let m and n be integers with
o
a-1 m
a ==,
n
2
(aOL“l is well defined since a > 1). Choose b to be
L
b= ()°
m

Using (2) there exist m+n identically distributed, independent,

stable random variables, Yyseres¥ and ZyseersZy such that
® = vas 4
17Nt Ym?
and (6)
bx2 = Z, + tee + Z s

where each Vs and s is distributed as
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1
(or mi/a X, since ¥y and x, are identically distributed).
Hence,

X, - ax, = + + -2 (2, + )

1 2~ 71 n T B V%1 T 2n’s
and since

m -1 . 1
d = —_— oL . _a_ =
“H @ @T - n o= om,

we can apply the lemma to show that

E{Xl - ax,|x + §x2} = 0. .

: . -1
Having proved the result for all rational a* » the theorem

follows by a straightforward closure argument.

Necessity:

The characteristic functions of %) and x,, are defined by

1]

fl(w) E{e"™1}

and

E{e" 2} .

1]

£,(w)
If 1fs holds for a pair (a, b) then by (3)

E{xl - ax2|x1 + be} = 0,

and, as a consequence, X5 and X, are mean zero,
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and it alsc follows that for all w,

e1w(xl+bx2) (x

E{ 1

- axz)} = 0. (7)

Now, since ) and x, are independent,

E{elw(xl+bxz) Xl} = E{elwxl xl}E{eIbeg}

= -1 fi(w)fz(Wb)’

o
L

E{elw(xl+bx2) Xg} - E{elwxl}E{eleX2 XQ}

= -3 fl(w)fé(wb).

Hence, frem (7),

fi(w)fQ(wb) = afl(w)fé(wb),

or
£1{w) £ {wb)
fl( y afz( by ° (8)
1 W 2 W

where fj(z) # 0. The assumption of a first moment ‘guarantees
that the first derivative of the characteristic function exists
and is continous. Since fj ig a characteristic functicn,

fj(O) = 1, and, therefore, fj # 0 on some copen neighborhood,

I, of the origin. Dlefining

£F{w)

f,(w) ?
]

. -

(9)

m, (w)
3
on I, we can now rewrite (8) as the functional equation

m (w) = am.{wh). (10)
L 2
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Suppose, first, that a is unrestricted. In the appendix
we show that the only admissible solutions to this equation
are

— 1 W d .
mj(w) = chGT-[w| R (11)

where cé and 4 are constants.

From (8) and (11), then, integration yields

1 d+1
—
log fj(w) °l F1 ||

> (12}

where the requirement that fj(O) = 1 eliminates the

constant of integration and assures that

d # -1. If ¢, = ¢, = 0, then fj(w) = 1 and X and %, are

identically gzero, which is the degenerate stable case.
Defining o = d + 1 and cj = - % c%, {(12) may be

rewritten as

log fj(w) = —c.|w|a. (13)

Now, (13) is a local result which holds on I. Let

w* = sup{|w[(13) hoids}. If w* < «, then fj(w) = 0 for

-]wl > |wﬁ| and arbitrarily close to w*. But with (13) this
would violate the continuity of fj at Iw*I, and (13)

must hold globally. It only remains to show

that (13) defines a symmetric stable random variable. Since

xj has an éxpectation, we must have a > 1, and since a > 2 would

imply, by (13), a zero second moment, we must also have a < 2.



—15-

Since lea is an evenfunction,cj is real and cj > G is
required to bound fj in modulus (cj = 0 is the trivia
distribution with unit mass at zero). This completes the
description of a symmetric stable characteristic function.
Suppose, now, that we restrict a > 0. Trom the appendix

the solutions to (10) are given by

o
m.(w) = c, |w as w 2 0,
:I :I l i 3 <
where (1w)

ot c.

B S

ot c

2 2

Integrating (14) vields

7 + 1 I 0
ij Wl w2z U,

(
\
log £.0u) -
og 5 .
- 1 +1
—Cj H;I |W] w < 0,

Again an extension argument verifies that (15) holds globally.

cdt+l

(15)

Since the real and complex parts of a characteristic function
are, respectively, even and odd functions, —c; is the complex

. + .
conjugate of cj and we can rewrite (15) as

log f.(w) = -¢c.lw 11 4 18 w} (16)
g £, st Tl
where
c+ = -c.{1 + iBw}
i~ 73 ’
and
—C_. E'“C.{l - iﬁw},
3 ]
and
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From {14) B is independent of j and, as before,
cj > 0and 1 < a < 2. Hence (16) coincides with the
stable characteristic function (1), and xl and X

differ only in scale.

Q.E.D.

Theorem 1 is readiiy generélized to the case of n > 2 random
variables. One such generalization is gilven below.

Theorem 2: {(An n- Asset Theorem)

Let x be a vector of n independent randem variables
possessing means and let a and b be n-vectors. The following

conditions are equivalent.

(Cl) For all choices of a, the subvector of

a ®x = (a,x ced X
0 ( 1 >“n n)’

1

exhibits ifs
and
(C2) The x; are symmetric stable with zero mean
and common characteristic exponent a > 1.
The feollowing cenditions are also equivalent.
(C1)" For all choices of a > 0, the subvector of
a o x exhibits ifs

and
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(C2)' The X, are stable with zero mean and can
differ only in scale.
Proof:
Assume that (C1) ((C1)') holds. Pick a (a > 0).

From ifs (2b) such that (wi, J)

E{a.x. - a.x. |bla o x)} = 0,
i%i 375

or

E{(a.x., - a.x.) elb(a(ax)} = 0,
11 7 7]

but this implies that (8) must be satisfied with a = aj/ai
b.a.
and b = bjaj° hence, by Thecrem 1 (C2) ((C2)') must

i'i

follow.

r~nversely, if (C2) ((C2)') holds, then applying the
lemma it is easily verified that the separating portfolio,
b, will be given by

a.
b, =A—— |a.

Il/l—ﬂ
S b 1

, (17)

where % > 0 is an arbitrary constant.
Q.E.D.

Theorem 2 describes the unique position of the stable
prandom variables in both multivariate probability theory and in
portfolio theory. Roughly summarizing, a set of independent random
variables will be separable at all levels of scale if and only
if the variables are stable with the same characteristic exponent.
The next section will examine scme further implications of

a

Theorem 2 and will consider some generalizations.



III. Some Ertenslons

A, Orthogonality

The multivariate normal distribution has proven to be
a useful basis for portfolic theory largely because It possesses
the mutual fund separation property (see Ross (2)), but, there
are a number of other canonical properties possessed by hoth the
normal and the stable distributions and it would be useful to
see how these are rvelated to separation.
For example, consider two normal random variables x_ and

1

b,)

%o with the same mean and a covarilance matrix, V. If b = (bl’ 5

is any portfolic of X, and x,, then any other portfclic a with

29

aVvVb=20 (18)

has a return, ax, uncorrelated with bx and, furthermore, its
return is actually independent of the portfelic return bx.
This property,that lack of correlation implies independence,
provides an easy way to find the optimal portfolio, b.

Simply let
b = AV “e, (19)

where A is a scaling constant set to let be = 1, and e is a

vector of ones. Now, any other portfolio a will have
na->5b, (20)
where

ne = ae - be = 0, (21)
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and, by construction,

nVb = Ane = 0, (22)

From the stochastic dominance rule, (3), then b must be the

optimal portfolio since

E{nx | bx} = 0. (23)

The property of zero correlaticn is an orthogonality
property, i.e., (18) is equivalent to rotating each vector by
t/2
a transform V (which exists since V is non-negative definite)

and requiring orthogonality of the rotated vectors. Fop multivariate

normal random variables the orthogonality condition, (18), implies that

E{ax | bx} = E{ax}. (24)

To make the point in a constructive fashion (18) assures
us that given any a we can find a b such that (2t} helds and,
conversely, given a b we can find a such that (24) holds.
These, seemingly weaker properties, are stated below in a
formal fashion suitable for our cases.

(C3) (Right Orthogonality) We will say that
X has the right orthogonality property
(RO) if (va) (b with a; = 0 = bi =0,

for a with at least two nonzero elements)

E{ax | bx} = 0.



—(=

(cy)  (Left Orthogonality) We will

say that x

has the left orthogonality propert (LO) if

(vb) (Ja with b, = 0 => a, =
- i i

least two nonzero elements.)
E{ax | bx} = 0.

Notice that the x are implicitly assumed
in (C3) and (Cu).

Despite the seeming weakness of (C3) and
the following rather surprising conditions.

Theorem 3:

0, for b with at

to possess medns

(Ch) we can prove

Assuming that x is a vector of independent random

variables possessing means, conditions (Cl)} through (C4)

are equivalent,.

Proof:

From Thecrem 2 (C1l) and (C2) are equivalent. Assume

that (Cl) holds. Tor any choice of a scale vector, c,

then, there exists b (with c; = 0 => bi =

all n with ne = 0, (and n; = 0 if ¢y = 0)

E{n{c 0o x) | b (c o x)} = 0.

0) such that for

(25)

Now, for any a we can define ¢ and n such that

hence, (25} implies (C3).

(26)
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Condition (C4) follows directly (C2) and (17).

Consider any b vector and let

]
a. = ab.|% . (27)
] ]

0, (27) implies that

From (17), for all n with ne

E{n(a o x) | bx) (28)

H
j=]
-

which verifies (C4).

Now, assume that (C3) holds. Consider a vector a with

a., a. 0
i? 75 2

a - 0, k#1i, 7.

Condition (C3) now takes the same form as in
Theorem 1 and it follows that x; and X, satisfy (C2).
Since this holds for all (Xi’ xj) pairs (C2?) is satisfied.
Similarly if (C4) holds, then we can also apply
Thecrem 1 to (xi, xj) pairs to verify (C2), since the
direction of causality from a to b or b to a was
irreleyant in the proof of Thecrem 1.

Q.E.D.
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There is also an asymetric version of conditions (C3)

and (C4) and of Theorem 3 and we include it below.
(C3)' We will say that x has the (RO)' property
if (va, ae = 0) (b with a; = 0 =>b, =0

for a with at least two nonzero elements).
E{ax | bx} = 0 . (29)

(Cu)' We will say that x has the (LO)' property
1%
if (¥b) (a, ae = 0, and bi = 0 => a, = 0

for b with at least two nonzero elements).
E{ax | bx} = 0. (30)

Theorem 3':

Assuming that x is a vector of independent random
variables possessing means, conditions (Cl)' through
(C4)' are equivalent.

Proof:
The proof is a straightforward adaptation of the

proof of Theorem 3.

Q.E.D.

B. Dependence.
The complete extensicn of the above results tc cases
where x is a general random vector is a difficult task, but it
is possible to treat an important subclass of cases that permits

dependence among the random return.
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One traditional way te build multivariate distributicns
with dependence is to construct them as sums of independent
pandom variables. Let L denote the class of x for which

&A, u) such that
x = Au, (31)

where A is a given matrix of full rank and u is a vector of
independent random variables possessing means. It can be shown
than not all multivariate random variables belong to L, but

L is an important subclass of the set of multivariate random
variables. It should also be clear that there is no loss of
generality in making A of full rank.3

The next theorem extends the previous results to the

class L.

Theorem L4:
Let x.¢ L. The following conditions are equivalent.
(Cl)* The vector Sx exhibits ifs for all S
generated by

S = CA“l,

where C is any diagonal matrix.
(C2) The u, are symmetric stable with mean zero

and common characteristic exponent a > 1.



(C3)*

and

(Cu)*

Prooﬁi

DL

Tor all a, there exists b with (aA)i =0 =>
(bA)i = 0 for (aA) with at least two nonzeroc

elements, such that

F{ax | bx} = o.

For all b, there exists a with (bA)i = Q0 =>
(aA)i = 0, for (bA) with at least two nonzers

elements, such that

Elax | bx}-: 0.

The proof is a straightforward exercise in cancelling

out the A transform by inversion. To i1llustrate, assume

(Cl)“. From (25) for all n, ne = 0

1

E{nSx | bSx} = E{nca™l au | b ca ™ Aul
= E{nCu | bCu}
:0,

which is a restatement of ifs for u, and, therefore

implies (c2)".



~25-

Theorem H':
% ot
Let x ¢ L. The conditions (Cl) through (Ch) are
equivalent when modified so that
(i) C >0,

(ii) (cay replaces_(CQ)h,
and
(iii) afe = 0.
Proci:
A simple modification of the proofs of Theorem 3'

and Theorem 4.

Theorem 4% and 4' can actually be strengthened and, in particular
(02)" implies that the restrictions on S in (Cl)" can be
eliminated. We will prove this in the next section in the

context of a somewhat different set of results.

C. Regression and Capital Asset Pricing Models.

The two parameter risk and return capital asset pricing
model (CAPM) has become the workhorse for both theoretical and
empirical exercises on capftal markets, The conclusions of
such models are usually summarized in an equilibrium pricing
relation of the form

E. = E + Ab. , ' (32)
i Q 1

where X is a constant, EO is the risk free return, Ei ig the
expected return on the ith asset and bi is a measure of the
covariation of the return s with some reference portfolic such
‘as the market portfolio of all risky assets. (For derivations of

(32) see Sharpe, Lintner, Black or Ross (1)).
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A traditional first step in empirically testing the model
is to obtain estimates of E and b by fitting the following

(time series) regression to the data, x:

x = E + blax) + e, (33)

where a iIs the market portfolio and

E{e|ax} = 0. _ (34)

The estimated coefficients b are the beta coefficients used
in testing the CAPM. If x is multivariate normal, then for
arbitrary a if b is the vector of covariances of x with ax, (34)
will held. In other words, if {33) defines €, & will satisfy
(34). On the other hand, for arbitrary distributions of x
there will not generally exist a vector b such thai usiug (s9)
to define €, (34) will hold. 1In at least this sense, then,
multivariate normality is a sufficient condition for the regression
to be valid. This property of having residuals which have zero
conditional mean, (3%), is also of importance in factor analysis
where factops are contructed as linear combinations of the
random observations. To fermalize this concept we will define

the following linear regression property.

(CS)* A multivariate random vector, x, possessing
means, is said to bave the linesar regression
property (LRP) if and only if (va) (&b) such
that if (33} defines &, then (34) holds,

i.e., for each i

E{x.|ax} = b.ax. (35)
i i
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We can now use our previcus results to describe an important
subclass of the class of multivariate distributicns with LRP,

Theorem 5:

If x ¢ L, then x has the LRP if and only if the u in
(31) are mean zero symmetric stable with common characteristic
exponent o > 1, i.e., conditions (Cl)* through (CS)*
are eguivalent.
Proof:

Consider sufficiency first. From Theorem &, (Cl)*
through (Cu)* are equivalent, and using (CQ)*, let the

uy be symmetric stable and let a be any vector. kquivalent

to (25) we have to show that (¥a) <&b) cb = 0 implies

E{cxlax} =0, f20)
or in terms of u we want
E{cAu|aAu} = 0. (37)

In the u's differ in scale we will include this scale
transform in A, hence, without loss of generality, let the u,
be identically distributed. This permits
us to rewrite the LRP as requiring that (va) &b), cb = 0 implies
E{cu|aul} = 0. (38)
Since the ui are symmetric stable,'we can convert au
into a sum of independent identical stable random variables
by the same procedure we used to verify sufficiency in Theorem 1.
The lemma now provides the b vector for which (38) holds. Proceeding

formally, suppose first that the lai]a are rational. If follows
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that (Qmi and m)

laIa = Ei s

and by (2) and symmetry au is distributed as

I &~
et
—
s

i
l/a
)

o [+

where the Zij are independent and distributed as (

Lemma 1, then

E = E . .
{culau} { E yl——hT-( Z )|i§jzlj}
= 0,
if
o
m, y. = 0,
i=1 Y% 0t
where
ci :
if . £ 0,
yi = |all ’ |al|
0 if ]ai] =

We can rewrite (39) as

By

Lav)

(u0)
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and since the rationals are dense, the vector

a . a

1 a-1 n a-1
b o= ( . la v a (41)
a "_a]‘ | l| 3 ] ‘|’a_nT I n| )
is the one we reguire,
Now ccnsider the necessity portion of the proof.
Let a; > aj # 0, a, = 0, k # i, j. Now, (38) becomes
E{c.u. + c,u, | a,u, + a,u.} =0, (42)
i7i 33 il id
where
c.b., + c.p. + z c. b =0,
11 73 k71,7 k'k
and setting S 0, k # 1,7 we have
c.b, + ¢.b. = 0. (43)
i'i 373

Since either ¢, or Cj can be taken to be nonzero, condition
(42) is eguivalent to (C4) on pairs. From Theorem 3 (CQ)* must
hold on pairs, and, as a consequence, all the Uy must be
symmetric stable with a common characteristic exponent o > 1.
Theorem 4 completes the proof.

Q.E.D.
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The asymmetric version of the LRP, (C5)', restricts ah > 0.

The following theorem provides the asymmetric form of Theorem 5.

Theorem 5':

If x e L, then x hasm(CS) if and only if the u in (31)
are stable and can differ only in scale, i.e., the primed
versions of (Cl)* through {CS)* are equivalent.

Proof:

See the proofs of Theorems 4 and 5.

Q.E.D.

In an important sense, then, Theorems 5 and 5' severely limit
the class of multivariate distributions for which factor analytic
regressions of the form of (33) are possible. This, in turn. has
strong implications for the multivariate distributions implicitly
assumed in empirical tests of the CAPM., Basically, when regressions
are run on arbitrary portfolios, the assumption of multivariate

stability is implicit.

Finally, we should remark ca the relationship of the results oﬁ thie
section to the more traditional approac% of defining the multivariate
stable distributions. Levy and Feldheim gave an explicit characterization
of this form, for vector x, analogous to (1) and défined by the property
of stability of the law under addition, scale and location changes, Press
has developed these results further and proven some useful properties
of the multivariate stzble defined in this fashion. For example, Press
has shown that a random vector x follows a Levy multivariate stable

distribution if and only if all linear combinations of the x; are

univariate stable. It follows, then, that if the uy in (31) are



-31-

stable, then x is a Lewvy multivariate stable random variable. I do

not know whether or not the converse is true. As we have seen, though,
multivariate stable random variables as defined by L have a number of
important properties , a;d if this class is

a proper subset of the Levy class then it remains to be determined whether
the wider class of multivariate stable random variables also retalns

these properties.
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IV. Conclusicns

This paper has examined some links between the concepts of stability
in probability theory and separability in portfolioc theory. Ross (2)
showed that portfolio separation did not imply distributional stability,
but this paper has shown that if a random vector of asset returns is
to be separable (1fs) at all scales of operation, then it must be
stable. Secticn IIT developed some implications of these results for
regression and factof analysis ,and multivariate statistical theory,
and applied these results to the problems of testing capital asset models,
In particular, we showed that a multivariate distribution must be
stable for regression analysis to be applied on all possible
portfolios, There remain, however, a number of unresclved Qquestions.

Toc mention two of the most important issues, first, the extension
of these findings to the (2fs) case (and more generally. the (kf=) case)
should lead to important results. As a conjecture, if the above results
were extended to include location and scale changes, the stable
distributions would again play a necessary role and would be
permitted to have arbitrary means. Secondly, while the results have

been extended to an important subclass of multivariate random variables

with dependence permitted, a full understanding of the general multivariate
case 1s not yet available. Further work along these lines should >roaden
our knowledge of the interaction between portfolio theory and statistical

theory.



AEEendix

This appendix provides a solution to the functional equation (10)
that arises in the proof of Theorem 1. The proof is adapted from Breiman
and apparently owes its origin to Cauchy. We should note that one direct
way of solving equations like (10) is to differentiate them in an effort
to turn them Into differential equations. Such an approach would give
the same solution that we find, but is not really proper since the derivative
ol mj involves the second derivative of £, which does not exist for stable
distributions with o ¥ 2 and which we cannot a priori assume exists. For

simplicity we change notation a bit in Theorem Al below.

Thecrem Al:

Suppose that there is an open interval, I, containing the origin

on which (va)(3t) such that

f(w) = ag(bw), (al)

where f and g are continuous. It follows that there exist constants

¢, k and d such that

(a2)

and
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Proof:

We first convert (al) into a functional equation in f alone.
If b= 0 for all a (# 0) then f = g = 0. Suppose, then, that

( z € I) with bz # 0, From (al)

flw) = ag(wba) = zg(wbz),
or

xflw) = f(wcx), ‘ (a3)
where we have defined

X = Z/a,

and

Since for any interval of x, w can be chosen sufficiently
small so that w, Mo T T, " e ~» ~1~hal relation and can be

solved for without regard to I. From (a3) and continuity

°, is monotone, hence by (a3)

f WC C = yf W = ny W

c = cc {ah)

Now, (al4) is the familiar Canchy equation and, for completeness
alone, we will work out its solution. First, for any integer n,
using (al)

¢, = e(2) = c([2 'n77)

hence



It follows that for any integers m, n

n 1
c(2™y = c((2H™
L
= c(2M7F"
m
n
= {02}

m

. n . . ;
Since 27 is dense on the nonnegative line, for all x > 0

lOgQX
c(x) = [c,]
2 )
or
log2c(x) = logzx log2c2
. 1o xlog2c2
& s
which Implies that
c(x) = x°
where ‘ (a5}
e = log2c2 .

(Notice that x > 0 implies c, > 0 from (a3).)

Now consider ¢ < From (a3l)

ar
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and
=] = ¢ =
1 T A R
implies
c =t 1.
-1
Thus,
= = +
= C - C . = . C
“_x -l-x R

c T -c_, (ab)
-X X _
Hence, for x ¢ R
X e
c, = T;J-fx[ . (a7}
From (a3), if we hold
we =y

a constant, then

-1 1
9 e ety

111

CTET lw[d. (a8)
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Similarly, from (al)

glu) = kﬁr lw]?, (a8)
and -

/4 . . (a8)

Q.E.D.

If we restrict a to be one sided, i.e., a 2 0, then a nearly

identical argument to the one given above verifies the following result.

Theorem A2:
Suppose that there is an open interval, I, containing the
origin, on which (va > 0)(3b) such that (al) holds. It Ffullows

that there exist constants o k+ and d such that

c+wd ifw?2o0,

flw) =
c_lw]d ifw< 0,
(a9)
k Wd ifw?2 0,
glw) =
k_|w[d if wx o0,
and 1
ba = TS§§§T |c/ka| /d R
where
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Proof:

The argument of Theorem Al leading to (aS) is unaltered,
where we take vy > 0 and x = y/a > 0 for a > 0. The argument
leading to (a8), however, is changed by the need to specify

different constants y_ and v, such that

if w < 0, and

1

WC

N
x “+

if w> 0, since ¢ is one signed (positive). This gives us the
X
freedom to specify pairs of constants ¢ and k+ depending on

whether w is positive or negative. The requirement that

40
|0

+ -
is necessary to define ba censistently.

Q.E.D.



FOCTNOTES v

The characteristic function, f(x), of a random variable z
is defined by f(w) = E{el¥WX},

I have not verified directly that -1 < B 21 as required in
(1), and T am somewhat Puzzled by the force of this restriction.
As Feller remarks on p. 542, the bounding of IBI is "the
sSurprising feature of the theorem.n However, the restriction
would seem to be a requirement for (1) to be the logarithm of
a characteristic function (i.e., a positive definite function).
If not, that is, if for some 6] > 1 (1) were still the
logarithm of an dcceptable characteristic functicn, f, then

it is easily verified that f would be stable invalidating the
Khintchine and Levy theorem. The same reasoning applies to
(16} and verifies that 18] < 1.

If A were not of full column rank then we could combine ui
to reduce the rank and if there were more rows than columis
We can simply add random variables that are 0 a.e.
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