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Abstract

This paper finds necessary and sufficient conditicns on the stochastic
structure of asset returns for portfolic choice to be equivalent te choice
among a limited number of mutual funds of assets, independent of investors'
preferences, This type of separation result is central to much of
modern financial theory and, as a consequence, the distributions which satisfy
these conditions, the separating distributions, form the underlying basis for

much of this thecry.



Introduction

Modern financial theory derives much of its analytic power from a few
strong assumptions it imposes on the models it develops. Without such
assumptions the special problems of the financial theorist, e.g., the
comparative statics of poertfolio positions, the pricing of financial
instruments and, quite generally, the behavior of speculative markets
would be as intractible and empirically empty in finance as they are in
general equilibrium theory. Perhaps the most successful of the theoretical
assumptions employed has been that of separability. Roughly speaking,
separation occurs in a portfolio problem of choice among many risky assets
when that choice is simplified to that of choosing amongst combinations
of subsets, or funds, of these assets.

The first rigorous separation results in pertfolio theory were due
to Markowitz and Tobin [19581, but the intuition if not the rigor of separation
had long played an important rcle in the neoclassical literature. Earlier
work by Fellner and Hicks had made it clear that the relevant
parameters in asset choice problems were those of return and risk, and it
was well understcod that the problem of valuing risky assets in equilibrium

wdas essentially the problem of determining the risk premium, i.e., the



aifferential anticipated return of the risky asset over that of a sure asset.
In their development of the mean variance analysis in portfolic theory,
Markowitz and Tobin were the first to put the tradecff between return
and risk on a solid analytic footing.

Tn a mean variance analysis the investor is concerned with only
two parameters of the probability distribution of total returns on
investment, the mean return and +he variance of the return. For a risk
averse investor the latter is a "bad" to be traded off against higher
mean returns; risk in such an analysis is equivalent to variance. Aside
from simply putting earlier noticns into mathematical notation within this
framework, Markowitz and Tobin obtained a number of important results.
Most notably, the analysis stressed the role playved by covariance, OY,
more generally, corelations, among assets in determining the optimal
portfolio proportions. Tn addition, the authors obtained the first
separation thecrem. In a world with a riskless asset they showed that
an investor could separate his portfolio decision into two stages.
In the first stage an efficient portfolic or fund, M, of risky assets
could be chosen and in the second the investor's attitudes towards
risk could be introduced to determine the optimal allocation of wealth
between the riskless asset and the efficient portfolio of risky assets.
The important simplification is that all efficient portfolios are simply
combinations of the same fund, M, of risky assets and the riskless asset.

The ewtension of the mean variance theory to an equilibrium theory

completed the necclassical analysis and was first accomplished by Sharpe



and Lintner. Since the separation principle holds in a mean variance world,
all investors with the same ex ante beliefs, repardless of their attitudes
towards risk, must hold the same fund of risky assets. Sharpe and Lintner
recognized that this must imply that the efficient fund of risky assets, M,
is the same as the market portfolio of risky assets and from the conditions
which guarantee the efficiency of the market portfolio they derived the
mean variance capital asset pricing model that forms the core of much of
modern finance. In an important contribution, Black generzlized their
results to show that separation would also obtain between two efficient funds
of risky assets in a mean variance world without a riskless asset,

The simplicity and intuitive appeal of the mean variance portfolio
and equilibrium results attracted a great deal of attention and much
effort has been directed at determining their generality. Beth Markowitz
and Tobin noted that if investors were von-Neumann Morgenstern expected
utility maximizers, then a mean variance analysis could be
justified either by assuming that utility functions were quadratic or
by assuming that asset returns were distributed by a multivariate normal
distribution. Tcbin further remarked that "any 'two parameter' family
of random variables" would be sufficient to justify a two parameter risk-
return theory.

The use of quadratic utility functions, even in their meonotone range,
however, to justify the mean variance approach has become somewhat
unfashionable. This is due largely to Arrow's observation that the quadratic

utility Ffunection exhibits 'increasing absolute risk aversion which implies
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that risky assets are inferior assets in a portfolic problem. Efforts to find
acceptable, tractible classes of utility functions for financial work have proved
most successful in intertemporal work. Here separation theorems of a
comewhat diffevent kind have been obtained by Leland, Mossin, Hakansson [18711,
and Ross [197471, who were concerned with questions of the intertemporal
stationarity of optimal portfolio policies and found that the constant
relative risk aversion utility functions played a pivotal role; under
certain circumstances they implied the separation result that portfolioc
composition was wealth independent. In a definitive paper, Cass and
Stiglitz thoroughly examined the utility function approach to separation.
They were able to completely characterize the classes of utility funectilons
that would permit separation in any stochastic environment, in the sense
that for all wealth levels an investor with a utility function in one of
their classes would divide his wealth between a limited number of
specific funds of the assets; the composition of the funds being independent
of wealth,

The dual side to this research, i.e., the delineation of the classes
of stochastic processes that permit separation for all utility functicns,
has alsc been the object of research--perhaps spurred to some extent by
Tobin's rather cryptic remark. In fact, it soon became clear that just
"any 'two parameter' family of random variables' would not do and that
further restrictions had to be igﬁosed. Féi&stein, for exéﬁgié; showed that
lognormal random variables, while defined by two parameters, would not admit
of separation. Both Merton ané Ross {1975], however, demonstrated that the

use of the continuous time lognormal or Wiener processes would allow separation.



The additional criterien that seemed to be required was that of closure

of the random law under addition. The well known Pareto-Levy class of
stable distributions not only served as limiting laws in central limit
theorems, but also were defined in terms of a tvpe of closure under
addition. Mandelbrot introduced this eclass of distributions into financial
work and Fama examined the portfolic implications of stability and proved

a separation theorem for these distributions. This work led Cass and
Stiglitz to coniecture that the stable distributions were both necessary
and sufficient for separation.

Tn fact, however, there exist a number of counterexamples to this
conjecture. Agnew displaved an example of a multivariate distributien
which was not stable (and, a fortiori, not normal) vet for which all
risk averse individuals would choose mean variance efficient portfolics
and, hence, obey the earlier Markowitz and Tobin separation rules.
Somewhat less idiosyneratically, a body of what might be called
symmetrv results has been collected. Tor example, Samuelson pointed
out that if the multivariate distribution function of the random assets is
unchanged by permuting the assets then all rigsk averse investors will
allocate their wealth equallv across the assets.

The intent of this paper is to resolve the question of what
distributions permit separation and, in so doing, to tie together a
number of the results cited above. Section T introduces the formal
definition of separation and describes the class of distributions with

the property that all investors choose the same optimal portfelio,



Section II proves a two fund separability result which will provide the
desired generalization of the mean variance and two parameter theories,
Section IIT analyzes the analogous K fund case, and Section IV discusses
some further extensions. Section V summarizes and concludes the paper.

Porticns of the proofs of a technical and supportive nature are contained

in an appendix.



I. One Fund Separability

This section introduces the concept of separability and provides
necessary and sufficient conditions for the simplest example, one
fund separability. A number of previous results in the literature
are then examined with the help of these equivalent conditions.

A word on notation is in order.

Throughout, X will demote the n-vector, (il,...,in), of individual
random returns. Tildes over variables indicate that they are random,
and if one of the assets {or a portfolio) is explicitly assumed to be
riskless, it will be taken to be the oth asset. Lower case Greek letters
will denote portfolios, n vectors which sum to uﬁity, i.e., & is a

portfolio if and only if

where

e = (1,...,1).
{We will permit free short sales, i.e., a, < 0.) The only exception to
this rule will be the vector n which will denote an arbitrage portfolio

which uses no wealth, i.e.,

Separability, as iocked at from the distributional side, is
a somewhat ambiguous concept and a variety of possible definitions
suggest themselves. We will deal explicitly with only the twe that

seem most natural, but several other formulations can be shown to be



equivalent. A particularly strong form of separation can be defined in
terms of the principle of stochastic dominance. Let U denote the

set of all monotene, increasing, concave (utility) funetions on R. A
random return vy is said to stochastically deminate an alternative,

W, written ¥2 @&, iff (v ¢ U).
E{Uly1} 2 E{ULw]}, (1)

where E{-} denotes the expectation operator. In other words, by (1), no risk
averse investor prefers % to ¥.

In the mathematics literature, Strassen, and in economics, Ross [19717,
have independently demonstrated that the statement §28 % is equivalent

to asserting the existence of two random variables % and & with
WY o+ E o+ & (2)

where """ is pread "is distributed as", z £ 0, is a nonpositive random

return and € is a noise term, i.e.,
E{g|y + 2} = o.

It is important to recognize that (2) does not say that wand ¥ + 2 + &
are equal, only that they are identically distributed. Fer example,
the number of atoms of radium that decay in a second might have
the same distribution és the number of telephone calls made to a central
exchange, but the two variables are not necessarily equal.

The sufficiency of (2) for (1) should be clear since (2) simply
asserts that % can be constructed from ¥ by shifting some probability mass

downward and adding néise, changes that make W of less value for all u e U.
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What 1s somewhat surprising is that the two conditicns are actually

equivalent. Notice, too, that wealth has been suppressed in the utility
Functions in (1) since we are regarding the same utlility function at
different wealth levels as different members of U.

The following definition of separability uses the concept of
stochastic dominance.

Definition 1:

~

A set of returns, ¥, iz said to exhibit strong k-fund separability,

. 1 k
skfs, iff there exist k mutual funds of the n assets, o ,...,0 , such

that for any portfolic 8, there exists a portfolio a,

1 kS
o = ala + ... F aka s
with
oaX 28X,
: k
where a; is the weight given fund o and E a, = 1. In additicn,
i=1 .

w

there exists some u € U for which E{U(aX)} is maximized at some «

The definition of skfs recuires that for anv portfolio, R,
there is a portfolic of the k mutual funds that stochastically dominates
B. Triviallv, the property has force only when k < n, and it is really
only useful when k is substantially less than n. The last part of the
definition is a boundedness assumption on the returns and it only insures
that there be some utility functlon for which the portfolio problem has a
solution. For example, if there were two riskless assets with different
returns, this requirement would be violated, and it would be artificial to
permit separation in such a case.

The concept of separzbility can also be stated in a somewhat
weaker form than Definition 1. Formally, we can define weak separability
as follows.

Definition 2:

A set of returns, X, Is said to exhibit weak k-fund
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separability, wkfs, iff there exist k mutual funds of the
n assets, al,...; uk, such that for any portfolio R and any

u e U, there exists a portfolioc a,

with

E{U{aX)} 2 E{U(gX)}

(if the expectations exist). 1In addition, there exists some u € U

ot
Y

for which E{U(aX)} is maximized at some «
Notice that for wkfs we do not require aX to stochastically
dominate Bi, rather we permit the choice of a to depend on U, the
particular utility function uﬂder consideration. It is zlear
from the definition that skfs implies wkfs, i.e., if X is strongly
k-fund separable then it is weakly k-fund separable. We shall, in
fact, show below that these two definitions are equivalent.
It might be useful, at this stage, to examine these definitions
in the traditicnal mean variance or general two-parameter case, Figure I
illustrates the familiar geometry with a riskless asset with return EO.
The set S is the set of (return, risk) pairs that can be obtained
by forming portfolios of the risky assets alone, and we will assume
that S is strictly convex. The efficiént frontier is the set of pairs
with maximum return for a given level of vrisk. If we permit free
borrowing and lending in the riskless asset,the efficient frontier will
be the line L formed by investment at EO and investment in M, a unique
and efficient fund of risky assets. This is an illustration of a two

fund separaticn theorem, since all risk averse investers will choose



return

FPigure I

risk
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positions along L, i.e., portfolios made up of investment in a fund
consisting of only the riskless asset and a fund, M, of risky assets.

Furthermore, this type of separation is s2fs, since for any
choice of B there is a point, o, on L that dominates B for all choices
of u e U; such a point will have the same risk level and a higher return.
For w2fs and not s2fg we would need a portfolio B8 such that different
points on L bested it for different utility functions, but no gingle
point, o, was best for all utility functions. The geometry of
Figure I makes it clear that such a situation cannot occur.

The two concepts come to the same thing, of course, if k = 1, i.e.,
wlfs and slfs are equivalent, since in both cases we are requiring
that there is a single dominant portfolio for all u € U. This is a
statement of stechastic dominance and in Theorem 1, below, we will
use the stochastic dominance results cited above to establish necessary
and sufficient conditions on X for 1fs. Some of the technical aspects
of the proof have been put in an appendix.

Theorem 1:

A vector of asset returns, %, exhibits 1fs if and only if

the fellowing conditions are satisfied:

3z, g)
(1) X, = % + &,
1 hR
(ii) E{Eili} =0 (c1)

and

(1ii) (@e) «a& = 0.
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Proof:
We can verify the sufficiency of (Cl) by showing that the
portfolio a stochastically dominates any alternative portfolio B.

Define n by

B=a+n, ne = 0.

From (1) and (iii)

aX = oz + &) = Z,
Now,

E{8%|aX} = E{(a + n)(Z + &)]3}

= B{z + ng|z}

= i,.
It follows from (2) that a§ stochastically dominates B%.

The difficult part of the proof is necessity. Suppose that

X exhibits 1fs. Let a be the domirant portfolic and define

Since o is the dominant portfolioc, for all n with ne = {, we must
have
a¥ + M v oaX + En (3)

or

Z+n¥n 2+ Sn’
where én is a noise term that depends on n, i.e.,

B{énlu%} = 0. (#)
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Notice that, since U contains only monotone increasing u, we could
have E{én!ai} <0 (on a set of positive measure) and still satisfy
stochastic dominance, but then B{nX} < 0 and we must have E{g_nIGQ} > 0
which would be a violation. Since (4) must hold for arbitrary
choices of n (ne = 0) we can apply Theorem A2 in the appendix to
show that
E(nX|2} = o. (5)
Notice that this result is not immediate from (3) and
(4) and it is here that the distinction between equality and
distributed equality, "', becomes important. Consider the

following example. ILet

and
-1
1/
ifz =1
‘ -3
n¥ =
3
1,
if z = -1.
l/2
1
If we take 1
1/2
én = »
175 =
then )
Z+ W= 3+ e = 1/2 0
1y
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and
E{§n|i} = 0,
but
E{nX|2} = +2 # O.

Demonstrating that (5) holds is the technically difficult portion
of the proof which is done in the appendix. Given (5), though,
the remainder of the argument is straightforward. Letting

i

NS e, - oo

. .th . .
where ei is the 1 unit vector we can define

E, T X=X, - 2

i i
Clearly,
X, =5+ (X, = %)
i i
=z 4 €,
and from (5)
E{&,|2} = 0

Q.E.D.

The conditions (Cl) provide a constructive characterization that easily

permits one to see how general 1fs may be. By picking an arbitrary 2
random return and n-1 arbitrarily chosen (conditionally mean zero
random variables) and by defining the nth, En’ so as to satisfy (Cl)(iii)

for someé g, the resulting X will exhibit 1fs. Of course, it follows
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from (Cl) that a necessary condition for 1fs is that all n assets have
the same expected return, E{3}.

In addition, if the ﬁi have finite variances, then a will simply
be the minimum variance portfolio. (This is true even if the Qi do not
have compact support, and, consequently, no monotone quadratic utility
function can be defined on their range.) To see this, note that the

variance of any alternative portfolio,8 = a + n, is given by

var{(a + n)X} = Var{z} + nvn

> Var{z},
where V is the covariance matrix of E&.

Conditions(Cl) and the sufficiency portion of Theorem 1 also
contain a number of previous results as special cases. Rothschild
and Stiglitz observed that if the ii were identically independently
distributed, then the unique optimal portfolio would be the equal
weight portfolio, (l/n, e l/n).. Samuelson generalized this
result to the case where the distribution function, F(Xl’ ey Xn),
is unaltered under permutations of the variables. Suppose that

Samuelson's condition is satisfied., Define

~ 1 ~
g, =X, - =1 X.,
i i ni i
and
z = }-E X..
ni i
Clearly,
~ l —alz-u
E{&.|2} = EfX. - =% % |= )
{51] } { 1 ni i'ni Xl}
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where we have used the symmetry of the distribution function to conclude
that the conditional expectation of any ii’ given the average of the
ﬁi's must be the average.l/

These results are too specialized to be terribly important in
their own right, but they are useful preliminary results and they do
serve to illustrate that 1fs can occur with a variety of different
distributions. In particular, there is no necessity that the ii
follow a multivariate stable distribution.g/ Finding necessary
conditions on distribution Ffunctions equivalent to (Cl), though, is
difficult and since it also does not seem to be a natural way to pose
the problem of separation we will not consider the question of
equivalent conditions on distribution functions further. As we shall see,
what matters for separation is not the marginal distributions of the
returns, but, rather, their co-relations which are properties of the
jeint distribution.

In the next section we will develop the notion of 2fs and it is
with this concept that we will be able to generalize the traditional

3/
two parameter pertfolio theorv.



-17-

IT. Two Fund Separability
Two fund separability is, of course, the central theme of
modern portfolio and capital asset pricing theory.
Theorem 2:
A vector of asset returns, X, exhibits w2fs if and only

if the following conditions are satisfied:

(v, z, &)
X, = E 7+ b.Z + &,
(1) Xl : t¥ o+ bzt el
where
Ei = E{Xi} =a_ + albi,
(11) (¥1) E{Eilxy + (1-0)2} = 0, (€2)

(iii) (3a, B) «f = BE = 0,
and if b is not a constant vector, then

ab # Bb.

Proof:
The proof of sufficiency is still straightforward, as in
the case of 1fs. Let y be an alternative portfolic to one
that is a linear combination of o and gB. By (C2)(i) and (iil) we can
define A such that

vb

dab + (1-A)Bb

and

YE = XaE + (1-A)BE,
and n is defined by
Y = Aa + (1-2)8 + n.

Clearly, nE = 0, and therefore
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E{nX|AaX + (1-2)BX} = E{nE + nEZ + ng|
AMaE + § + (aF)2) + (1-0)(BF + ¥ + (BE)Z)
=0,
by (€2)(ii). This verifies that (Aa + (1-3)8)X stochastically
dominates y% and, consequently, (C2) is sufficient for s2fs and,
a fortiori, for w2fs as well,
The proof of necessity, again, is more difficult. Suppose

that X does exhibit w2fs. By definition, (wu, Y)(IA)
E{UDMeX + (2-2)8XI} 2 E{UMyX1}.

Tc put the point somewhat differently, for every u € U, the
optimum is attained at a portfolio that is a linear combination
(simplicial) of two portfolios o and R. If u(*) is chosen to be
everywhere differentiable and if it has an internal optimum, then
Ao + (1-1)R must satisfy the first order conditions for an

L/

optimum at some value of X, The first order conditions are

E{U'[yi](ii - Xi)} = 0; all i, 5. (6)

On the other hand, we can find the optimal value of X by the
first order condition

E{U'[AaX + (1-2)8X}(aX - 8X)} = o. (7)

This condition, (7), then, must imply that (8) iIs satisfied
for v = Aa + (1-1)B. Furthermore, given X, this implication

must hold for all positive, monotone declining U'(-).
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Picking a particular A value and defining

§ = AaX + (1-1)BX,
v(d) = E{aX - 8%|4},
and

5.(3) = BIX |a),
1 1

it must be the case that for all pogsitive, monotone declining

functions h(-),
E{h{g)v(a)} = o,

implies that
E{h(ﬁ)LSi(a) ~ Sj(a)]} =05 all i, J.

Applving Theorem Al in the appendix we have that (vi)(?hi)
Si(i) = Rl(ﬁ) = biV(i), a.e.,

where we set b = 0 if V() = 0.
Taking expectations over the conditioning variable, g,

in (8) we have that

E, - E. = b,(aE - BR), for all i, (9)
b 1 1

and 1f V(3) # 0, (8) also implies that

H

ab - &b 1. (10)
Now, define ¥ and % bv the two equation system

aX = ok + ¥ + (abh)Z

and (11)

joo)
=<
1§

BE + ¥ + (Bb)z,
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and let

&, =X, - [E, +7 + b.2). (12)
1 1 1 ’ 1

From (8), (9), and (10) we have that for all A
n{e, - & 2§ + (1-0)E} =
1 1

E{X. -X -T[E, -C
1 1 1

E{%, - %
1

1t (bi-bl)z]liﬁ + (1-2)z}

- bi(ai - B AF + (1-2)2}

1
:O,

and, from (11), a& = © implies that
E{éilli + (1-x)z}= 0.

Combining (9) and (12) we have

R, =B, +y +pE+¢E

i i 1
and (c2)(1)
E.=a +ab,,
1 o] 1
where
= E_,
ao 1
and
a = aobF - BE.
1

Notice that in the case of V(4) = 0, the problem reduces t¢

that of one fund separability.

0.E.D.
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While the form of (C2), particularly (C2)(i), might seem both
specialized and somewhat odd, in so far as the literature goes in this
subject, it is quite general. In the Fiprst place, conditions (C2),
as with (Cl), offer a constructive approach to the separation problem,
We are free to pick ¥ and Z arbitrarily and any n-2 random variables

5/
Ei which satisfy (€2)(ii), "and then we can define ﬁn and En te

-1
satisfy (C2)(iil) for some choice of a and 8. Moreover, the

thrust of the theorem is that (C2) represents the most general set of
conditions that can be found which permit the usual development of
portfolio thecry. To see this more clearly we can use Theorem 2 to
examine a number of alternative theoretical developments of portfolio

separation. To facilitate the exposition, we will implicitly be

considering cases where E is not a constant vector.

Twe Parameter Models

The two parameter models introduced by Tebin require that expected
utility be a function of only two parameters, the mean return, m, and
a risk variable, o, for allrchoices of a portfolio. For a given risk
level, o, then, the objective is to maximize the return, m. If this procedure
implies a 2 fund separation result for all choices of a utility function,
/

5
then by Theorem 2 the random distribution must be of the form of (C2).

We can, however, say a bit more than this.
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Consider any portfolioc, y, with an expected return, YE = m. If

we choose A so that
AeE + (1-A)BE = m,

then
yX = (ha + (1-2)B)X + nX, (13)

where
ne = nf = 0 and, consequently,

E{ k| (o + (1-1)8)X} = 0,

In other words, whatever spread parameter, o, is used the portfolio
‘e + (1-A)8 has minimum spread for the given expected return. This
permits us to compute the two funds, o and 8 when separation cccurs.

Furthermore, suppose that the random variables ii possess
variances. It is clear from (13) that ie + (1-3)B must be the minimum
variance portfolio with the given return MaE + (1-1)BE. The portfolios
o and B then will be two portfolics which span the mean variance
efficient frontier. In fact any two such portfolios can

be chosen for separation, and this illustrates an important general

point about separation theorems.

In (C2) we did not require that ¢ and g be unique. Rather, all
we can say is that o and g span a space in which any two (independent)
members can serve as separating funds. For example, choosing

Al # AQ we can define
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lla + (l-Al)B,

<
ir

and

2
¥

Ao+ (1-A2)s,

and the portfolios Yl and Y2 will be separating funds. In addition,

if we pick yz (say to be the market portfolic in a pricing model)

then yl can be chosen to be uncorrelated with Y2 (e.g., as a "zero beta"
portfolio in a mean variance pricing model?/)

In the two parameter case, then, the spread parameter can be taken to
be the variance (if it exists). It should be stressed though that this
two parameter evaluation is valid if and only if the random returns are
of the form of (C2). In summary, if a two parameter return-risk tradeoff
can Le taken and yields separation, then (C2) must be satisfied.
Conversely, if (C2) holds, i.e., given w2fs, then the relevant separating
portfolios will be minimum spread portfolios and this will permit
a two parameter interpretation.

Normally Distributed Returns

What of the normal distribhution then, or the continuocus time
version, the Wiener motion? Since we know that these distributions
exhibit two fund separation, it must follow that all multivariate
normal random variables take the form of (C2). It is instructive,
though, to demonstrate this directly since (C2) is, at least at first
appearances, a somewhat restrictive form.

If the covariance matrix, V, is singular, then a riskless
portfolio can be formed and for simplicity of exposition alcne we

will assume that V is nonsingular and explicitly assume a riskless
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asset with return Eo. IFf (C2) is to be satisfied the riskless asset

must alsc take the form of (C2)(i) and as a conseguence éo =z 0 and
v+ E 2z =0,
. o
In other words , scaling Z so that al=1 we must be able to write the risky

asgets in the form

X. - E. (E. -E )z + €,,
1 O 1

where

(14)

[ng]
——
me
[
N
[
11
(&

To do this we choose 2 to be the excess random return on the

separating portfolio, a, defined by
o = kV_l(E - L 3,
o

where EO now denotes a constant vector with E in all entries, and k is
e}

a constant chosen to normalize a to be a portfolio, ce = 1. Thus,

Z'_—'CI.SC—Q,E

X(E - Eo)v'l(i - B).

Letting v be any vector it is well known that a sufficient condition
for conditional independence, (14), of normal random variables is

that they be uncorrelated. Since

covariance (y'g&, 2)

covariance (y[X - E - (B - EO)ZJ, Z)

. ) _ R
y'II - X(E - Eo) (E EO) v Qv o+ kv (E EO)

Ky'(E - ) - ky'(E-E) - k(E - E )"V E - E)
O (&) [®] O

t - _ t -
kv'(E EO) ky'(E EO)

=0

]
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it follows that all multivariate normal random variables satisfy the
conditions of (C2).

The same is true of the stable distributions, but since the use
of stable distributions in portfolic theory is generally closely linked
with the use of market factor models (see, e.g., Fama) -

it is more instructive to treat them as special cases of the factor
model appreach.

Market Tactor Models

The general one factor generating model is written in the form

ii = E. + b_2 + £, (]_5)
or with a common risk as
X, 2 E, + ¥+ b2+ g,, (16)

where

Generally, z Is interpreted as a systematic on market risk and & is

the unsystematic risk of the asset.

Until something more is said about the random factors and
g terms, though, these models are without content, i.e., all random

variables can be put into these forms. For example, if & = 0,
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then these can be easily understood as generating mechanisms which
restrict the rank of the state space tableau of returns (see Ross
(1973) and (1976)). More usually, & is not identically zero and it

is required that there exist a such that

ab = 1,

and

af = 0,

but it should be noted that this, tco, imposes no further restrictions
on the random variables. A meaningful restriction is obtained when
we require the éi to have a degree of independence (e.g., mutually
uncorrelated).
Naturally enough, without anv restrictions there can be no
separation results, but unfortunately, the requirement that the
éi be linearly independent, while a strong and interesting assumption, is
also not sufficient for two fund separation. We will say more about this
case in Sections IIT and IV, but for the moment we can easily demonstrate
that either model (15) or (16) with € = 0 is sufficient for two fund
separation. This should be clear since the only discretionary source of
risk in the two models is the amount of market risk, Z, borne in the
portfolic and this implies that a two parameter model is applicable.
Directly, though, with & = 0, if arbitrage is not possible then both (15)
and (16) must actually be written in the form of (02).8/
Suppose now, that & is not identically zero. Suppose, too, that

there exist portfolics o and B for which
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ab # gb,

and

Qg RE = 0.

Given any portfolio, vy, it is possible to combine o and B so that the
resulting portfelic has the same svstematic, Z, risk as the y portfolioc
and no & risk, but there is no assurance that such a portfolio combination
will have as high an expected return as that of the y portfelioc. In other
words, unless (C2)(1) helds and F. is a linear funection of bi’ we cannot
have 2fs in the market medel. We will return to the problem of separation

with market models in Section III helow.

Capital Asset Pricing Theory

The traditional results of the two parameter capital asset pricing models
follow in a straightforward fashion from w2fs. This can be shown in any
of a number of ways, but it is most instructive to derive the theory directly
from the separating form of (C2). For expositional purposes, suppocse that
there is a riskless asset. From (C2) w2fs implies that
%. = E. + b.z + E.,

and (18)

Since all efficient portfolios have no &€ risk, the market portfolio must
also have no € risk and takes the feorm
X =E +b %, (19)

m m m

and gcaling z so that bm = 1 we have the familiar Sharpe-Lintner pricing
result

E, -E =(E -E )b, . {20)
m o 1
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This derivation is deceptively simple and it is worth recapitulating.
Once we know that the distribution permits w2fs, then from (C2)(i) it is
clear that the market portfolic is efficient and can be taken to be one
of the separating funds. The basic pricing result (20) is an immediate

consequence.,

Stochastic Dominance Theory

There has long been a hope that the prineipies of stecchastic
dominance could be applied in portfolioc problems tco eliminate the
need for strong distributicnal assumptions. To date, the results
have been somewhat weak and Thecrem 2 offers some explanation.
Conditions (C2) are required of any portfolic theory that
obtains separation results and this makes any attempt to search
for weaker or more distribution free results unrewarding. This is
not to say that work on stochastic deminance is futile, but, rather,
that results will be forthcoming only in special cases.

Before generalizing Theorem 2 to the case of kfs, we will
end this section with a simple corollary that establishes the promised
equivalence between w2fs and s2fs.

Corollary:
w2fs and s2fs are equivalent.

Proof:

As we observed before s2fs implies w2fs. TFrom Theorem 2,
theugh, w2fs is equivalent to (C2) and by the proof of sufficiency

fer Theorem 2, (C2) implies s2fs.

Q.E.D.
In what follows we will drep the distinction between strong and weak

separability.



-29-

ITI. K-Fund Separability:

The following theorem generalizes Theorem 2 to the case of
kfs. As Is to be anticipated, the k funds are not unique and the
funds given in the theorem, as with the 2fs result, should be
interpreted as defining a k-1 dimensional space within which all
optimal portfolios lie. Any basis for +this space will be a set
of k separating funds,

Theorem 3:

A vector of asset returns, X, exhibits kfs if and only

if the following conditions are satisfied

1 k-2
@y, z,...,2 E)
k-1 3
(1) X, = Ei + ¥+ .z bijz +E,
J=1
k-1
where E, = a + Z a.b..,
i o) e
i=1
k-1 .
(i1) (w0 E{g. Iy + T a.30} = 0, (CK)
ik 2]
J=1
1 1 k_
(iii) @o, ..., ok) witha & = ... = a & = 0,
and the two matrices
[-e . B and e E [alB]],
where
B=I[Ib..1,

1]

have identical rank on all submatrices formed from corresponding

columns.
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Proof:

The proof is a straightforward generalization of that for

Thecrem 2.

Q.E.D.

Given (CK) it is easy to verify the corollary that wkfs and skfs
are equivalent, and we have omitted the distinction above. Distributions
which satisfy (CK) for some k will be termed separating distributions.

The generalization to kfs iIs of some interest bevond that of
the two fund separation result. In particular, CK permits the
presence of systematic factors, Ej with arbitrary coefficients, bij'

The rank conditlions of (CK){(iii) do not interfere with this; they only
insure that separation obtains in situations where the factors cannot
be combined intc a fewer number of factors. This is necessary since
while kfs is sufficient for k'fs when k' > k the latter is, of course,
not true. The analogous situation arises with (C2)(iii) in the case
of 2fs. If E is not a constant vector, then [e ! E] is of full rank

2 and we require that ol # BE for the twc separating funds a and 8 to
span all returns. In the k fund case we need to span all feasible
facteor weights as well,

The conditions (CK) also indicate the pivotal importance of general
linear factor models for separation. For k-fund separation it is both
necessary and sufficient that returns be generated by a k factor generéting
mechanism of the form of (CK){i). Furthermore, the expected returns,

Ei’ cannot be arbitrary, but must, in fact, be linearly dependent on the
factorlbeta weights., Onece these factors are identified as observable
portfolios, the separability conditions become testable capital market

equilibrium conditions.
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IV. Some Extensicns

One of the consequences of the above representations of separability
is that separation occurs only under certain restrictive conditiens. If
exact separation does not occur, thougl, there remains the possibility of
approximate separation. Suppose, for example, that returns are

generated by the simple one factor model

X =FE, +b.w + &, : (15)

where the éi are linearly independent. As we have seen, this model,
generally, fails to satisfy the separation conditions
Suppose, though, that by the law of large numbers portfolios, o,
can be formed that diversify away the nonsystematic & risk so that
ag % 0.

For such portfolios, then, the generating model is essentially of

the form

and we have already shown that (if arbitrage possibilities are eliminated)
this model exhibits 2fs. These concepts are developad into the basis of

capital pricing theory in Ross [1973] and [1976].
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V. Summary and Conclusion

This paper has described the conditions on the stochastic
distributions of asset returns that are both necessary and sufficient
for separation for all risk averse utility functions. In this sense
it is the dual to the papers by Cass and Stiglitz, Hakansson, Leland,
Mossin and others who have developed the theory of utility functions
which permit separation for all stochastic environments. The
results may be somewhat surprising in that certain common distributions,
in particular, the Paretian stable distributicns do not emerge as
central to the analysis. Rather, what we are concerned with in
portfolic theory is not so much the marginal distributions of asset
returns as the interrelationships amongst random assets. For
the problems of separation and, therefore, for portfelio theory in
general, the linear factor models occupy a central canonical role

in describing these correlations.



Footnotes

1/

We should also note, at this stage, the work of Hadar and
Russell, and Fishburn. Fishburn has derived a number of conditicns
which are equivalent to one portfolio dominating another in a stochastic
sense. For example, in our notation, he derived the result that a
portfolio, o, would dominate a portfolio B (in U) if and only if
for every choice of u £ U there is one investment in the o portfolio
which is preferred tec one in the B portfolioc. This result can then
be applied to the question of whether diversification as opposed to
"plunging" is optimal. This latter question has occupied Hadar and
Rugsell in their work. Qur concern is somewhat different; we are
interested in restrictions on the underlying distributions which
guarantee separability in the k-fund sense defined above. That is,
we are asking under what conditions the class of optimal portfolios
may be simply characterized.

On the other hand, while it iIs possible to use Theorem 1 to
verify the sufficiency for 1fs of a multivariate stable distributiocn
with identical means, to do sc requires the development of some
multivariate distribution theory for these laws that deces not appear
to be readily available in the literature. In the normal case, for
example, it is well known that if

then

E{nX|aX} = 0,

where V is the covariance matrix of X. What is required for other
stable variables is a similar notion of conditional independence given
zero cospread.

3/Before concluding, it might be useful to briefly
consider the notion of monotone separation, M, i.e., separation when
we drop the concavity requirement. Since monotone separation implies
U separation, a fortiori (Cl) remains a necessary condition. Tor
sufficiency, though, we require Prob{g, > 0|a§} = 0 (z.e.) and this
implies that &n= 0, a.e,. In other words, a necessary and sufficient
condition for M separation (with no short sales restrictions) is that
xi =z, all i,
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/Such a U(") exists by assumption.

5/ .

It might be of interest to note that (C2)(ii) can be restated in a
slightly different form. Requiring that E{&,[¥, 2} = 0 clearly implies
(C2)(ii), but I am as yet unsure whether it Is actually stronger than
(Cc2)(ii).

Jor s . NP .
Notice that, a priori, the problem of maximizing aE subject to a
constraint on o{a) does not generally yield a separation result without

some restrictions on the spread function, ©.

7/ . . . .
If there is a riskiess asset with return Eo it can be chosen as one
of the separating funds. This follows from the reguirement that a riskless
asset must alsoc satisfy (C2). Hence, éo Z 0 and

v o+ boz = 0.

For all risky assets, then scaling Z yields

¥, = E, + (E, - E )% + &,

i i i o i

Since aX and RX are now dependent only on Z, they span the riskless asset,
and it can be chosen as one of the separating funds.

8/Consider (15), for example, with & = 0. If b is constant, then all
portfolics have the same risk, bz, and unless E is also constant it will
be possible to have arbitrarily high returns at no cost or risk with an
arbitrage portfolio n. If b is not constant, to prevent the same sort of
arbitrage all portfolios with ne = nb = 0, must also have nE = 0, hence
there must exist constants a, and a; such that

E, = + .
1 ao albi

For example, it is possible to use the results of stochastic
dominance, together with Theorem 2, to derive some interesting theorems
about multivariate distribution theory. Theorem 2 permits a characterization
of those distributions beyond the normal with the property that under
specified linear restrictions, lack of correlation is equivalent to
conditicnal independence,



Appendix

The purpose of this appendix is to establish the two results used
in the proofs in the text.

NDefine M to be the class of all nonnegative monotone declining
functionsg and let Lz denote the class of functicons that ave continuous
and piecewise linear on [a, b] and vanish elsewhere.

Theorem Al

+
If for all h e M

jhd}‘ = 0 ':._—)jhdf; = 0, (1)

and if (1) holds for some strictly declining h € M+, then (Ik)
G = kF, a.e.. (2)

Proof:

b b
First we show that (1) holds for all h ¢ La. Ifh e La,

A +
then there exists a § # 0 and sufficientlv small so that h + &h ¢ M .

S+ snyer = o,

Hence, 1if
then

which implies by (1) that
f(ﬁ + 8h)dg = 0,

and, therefore,

/fth = 0.
b
5 and choose ¢ such that

jhdF = cfgd}".
b

Since h - ¢g € La,

/r(h ~ cg)dF = 0

Now, pick g, h & L
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implies that
/(h - cg)de = 0,
or

/hd@ = c/gdc..

Tt follows, then, that (Fk)(+h € LZ)

fhdr = K JLds, (3)
and it is easy to see that k is Independent of the choice of interval
[a, b]. We can now apply Proposition 8.17 in Breiman, for example,
to verify from (3) that (2) must hold.

Q.E.D.

Tn applying Theorem Al in the proof of Theorem 2, we take dF = V(g)dQ
and 46 = [Si(q} - Sj(q)]dQ, where () is the distribution function of g.
Notice that T and G are, themselves, not distribution functlons, but that
does not affect the proof and (8) in the text follows directly from A(2)
above.

The next theorem, Theorem A2, is used in the proof of Theorem 1 in
the text. .Just as Theorem 1 is onlv a special case of Theorem 2, the
procf of Theocrem A2 1s really Just a specialization of the proof of
Theorem 2 in the text. It has been separated out, though, both for
expositional purposes and because it might be of some independent

interest.
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Theorem A2:
If (wl)

Z4+AFNZ o+ E(N),

where

E{¢()) [z} = o,
then

E{y|2} = ©.
Procf:

For all u £ U, Jensen's inequality implies that
E{vlz + Ay1} = E{U[% + &1} < E{ULZ]}.
Concavity also implies that

ULE] = ULE + A§ - AF]

1A

ULZ + Ay] + (-2y)U'[z + Av¥],

and taking expectations yields

E{ULZ1} < E{ULZ + A§J} - BDSU'LE + ag]t).

The inequalities (3) and (4) imply that (whi)

E{AFU'[Z + 2§17} < E{ULZ + A1} - E{U[ZT}
< 0.

Trom (5) it follows that (wx > ©)

E{U'[Z + A§]} <0,
which implies that

E{yu'fzi} < 0,

(3)

{u)

(5)
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and (i < 0)
E{yU'fz + xy]1} 2 0,
which implies that

E{yu'[z]}

v
L]
-

hence

E{FU'[2]}

O.
Since u ¢ U, U' is an arbitrary slement of v T ana by Theovem Al

E{yfi} =0, a.e..

G.E.D.
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