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I. Introduction

The two parameter capital asset pricing models of Sharpe [26],

Lintner [197 and Fama [7] make explicit assumptions about the prob-

ability distributions of one-period security returns. There is con-
siderable disagreement among economists about which probability dis-
tributions best describe the empirical distributions of security re-
turns. One aspect of this disagreement is a controversy over the
best method of measuring security returns in developing theoretical
and empirical probability distributions.‘ This issue is critical,
since the measure of security return has important implications for
the appropriateness of alternative probability 335umptions.2

One procedure for measuring returns, most recently employed
by 0fficer [21] and Blume [1] is in terms of discrete time percentage
changes in investment value. For example, suppose one is interested
in examining the change in investment value of a security over a
particular time interval. The return is computed by taking the in-
vestment value at the beginning of the time period and dividing it
into the investment value of the end of the time period -- resulting
in a percentage investment return (i. e.,, return relative). Alter-
natively, the investment return of securities has been commonly de-
fined in terms of continuous compounding. Here, the return of a
security is measured by computing the percentage change in invest-
ment value over a time interval and taking natural logarithms. This
procedure was used by Mandelbrot [20] when he introduced the “'stable

Paretian'' probability hypothesis to cotton future contract returns,



and later by Fama [8] for common stock returns and Roll [23] for
Treasury bill returns. Moreover, much empirical work purports to
suggest that security returns, whether measured in percentages or
logarithms, conform to non-normal members of the symmetric, stable
class of probability distributions with characteristic exponent
a, 1 < g < 2.3

The primary purpose of this essay is to examine several im-
plications of using the logarithm of returns and percentage returns
in developing probability assumptions for asset pricing models.
Our analysis leads to three main conclusions:

I. The logarithm of security returns is the only measure of
returns for which returns can be literally stable;

2. If the logarithms of security returns can reasonably be
expected to be stable, they will have characteristic ex-
ponent 0 < o < 2 and shape parameter B = 1 or be stable
with characteristic exponent equal to 2, that is, normal.
The logarithm of security returns will not obey a sym-
metric, non-normal stable law. Indeed it must be as
asymmetric as it is possible to be!

3. The expectation of the logarithm of security return will
not be the same as that for equilibrium instantaneous
return for a security in a capital asset pricing model.

The formal presentations of section 1l1 are made in a tech-

nical appendix.



Il. Security Returns and Stable Probability Laws

A. Individual Security Returns
Consider the price of an individual security Pt’ t=1, 2,.
to be the result of a stochastic process such that

= P N
() Ee-1 (Pt[Bt-l) =P ez 0,

where Et-l is the conditional expectation operator at time t-1 and et-l rep-

resents all information available about the security's value at the time
t-1. The variable p is an exogenously determined discount rate. Thus,
the sequence {Pt} constitutes a submartingale.h Then, for any T the
return of an individual security can be defined as,

T
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That is, (PT_Pl)/Pl is a good approximation to Rn(PT/P])
if the former is small as it is likely. to be for small T, say for a

single transaction. However, if the number of transactions is large



the approximation may be poor. Furthermore, (PT—P])/P] is not

additive, that is

The interesting point is that if discrete time security returns
are sums of many independent price’changes from transaction to transac-
tion, and if security returns conform to any probability distribution,
the generalized central limit theorem states they will conform to stabie
distributions.5 However, only the Togarithms of individual seéurity
returns can be literally considered as sums of random variables. Thus,
the central limit theorem cannot be used as an a priori argument for

the percentage return of securities to conform to a stable law.

B. Portfolio Returns
The '"log stable' model does not carry over into portfolio theory.

The log return R and the percentage return Q are related:

=
I

¢ in (1 +Q),
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I
-

Consider a portfolio consisting of two securities with equal value, say
1/2 each.

Then

Ro

Q=1/2 (Q; + Qy) = 1/2 (eRl +e 2 -2)



and

Ry

R=tn (1 +Q) = en (172" + &R2)y

If Ry and Ry, have stable laws clearly R will not! Thus there is

no a priori reason for log portfolio returns to follow a stable law.
Next, consider the percentage return for a portfolio in a

single time period. Assume that the portfolio consists of K securi-

ties in amounts of value aj, a,, ... a. Assume without loss of

generality that

K
I oa =1,
k=1 K

that is, that the units of measurement are so chosen that the opening
value of the portfolio is 1.

Let Q + 1 be the closing value of the portfolio. That is, Q
is the percentage return on the portfolio. Let Qk be the percentage

return on the kth security. Then

The assumption which we make is that Q1, QZ’ A QK are mutually in-
dependent. The random variables Q and Qk must be between -1 and =
with probability 1, and the expected value of the closing value is
the same as the opening value for each of the securities as well as

for the portfolio itself. Thus



We can argue that the risk approaches 0 and that Q approaches

a stable law as the portfolio becomes more diversified, that is, as

max
12k 2Kla |~ 0.

It would be very easy to prove this if we could assume that each of
the Qk and therefore Q had a finite variance. This may not be jus-
tified and so we will not assume it.

Let

Qk -min (0, Qk)

and

Q; = max (0, Qk)'

Then, by definition
Qk = Qk - Qk

where one of the terms Q: and Q; must be 0 according as Q>0, or <0.

Both are nonnegative. Furthermore, Q, is bounded between 0 and 1.

k
It follows that
EQ; < o
Since
EQk = 0!
- +
0 < EQk = EQk < @
and therefore
- +
E|Qk| EQ + EQ <=
where leI is the absolute value of Qk' It follows from this and

independently by similar reasoning that

ElQ] <.



It follows by the Law of Large Numbers that

EQ -~ 0

as

max
I <k<kKla|~> 0

that is the portfolio becomes less risky in the limit. (See Feller
[T1] page 231.) On the other hand under these assumptions the central
limit theorem obtains and the distribution of Q, suitably normalized,
approaches that of a stable law if a limiting distribution exists.
Under the preceding analysis we would find virtually no
variability in the returns of well diversified portfolios of common
stocks and since these is, the assumption of "many small independent
effects'! does not seem to be valid. These must be at least one indi-
visible effect which is market wide and substantial. However, there
is no reason why this market wide effect would follow a stable law,
thus there is no a priori reason to expect portfolio percentage returns

to follow a stable law.6

111, implications of Natural Logarithms of Return and Stable Probabil-
ity Laws

Since the Togarithm of individual security returns measured over
any finite Interval in calendar time can be thought of as sums of random
variables, it is not unreasonable to expect that they would conform to
a stable law. Specifically, it can be shown that the logarithms of re-
turns should conform to a non-normal asymetric stable law with character-
istic exponent 0 < o < 2 and shape parameter =1, or they will conform

to a normal stable law.



Consider a boundedness condition taken from the familiar

sub-martingale model of equation (1)

P + %
©) E (P qlo ) <1ws <
and under a continuous compounding measure of returns, its analogue

Re
() E,_;(e "] _) <1+ 6t<w

t-1 t-1

where

R
t

zn(Pt/Pt_ ).

1
This last condition requires that (dropping the et-i)

(8) E._y(max (0, Rt))2 2 CE,._; exp (max (0, RJ)) <o

R
since Ri < Ce b for some C < =, when Rt > 0.

(R )2

Ry < = if the distribu-

Inequality (8) requires that Et-
tion is symmetric, hence it will be satisfied for a symmetric stable
law only when o = 2 and the moment of order o = 2 exists. It follows
that (8) will not be literally true under a symmetric, stable law
where a < 2. |t is reasonable to ask under what conditions (8) can
be satisfied when o < 2.7 We show that under a stable law this can
only be true if the shape parameter (or asymmetry parameter) B is
equal to 1, and 0 < o < 2, (A formal proof is provided in the
appendix).

We conclude that if the distribution of Rt can have a non-

nermal stable distribution, it can only have g3 complietely asymmetric

one with B = 1. However, it should be pointed out that under a stable



law completely asymmetric distributions need not be greatly skewed
in terms of the common measures of skewness. For example,

if o is close to.2, say 1.95, and if B8 = 1, the dis-
tribution of Rt will be approximately symmetric. Some preliminary

analyses by Marshall Blume of the University of Pennsylvania indicates

that for stable laws with 1.5 < o < 1.7 and 8 = | about 40% of the
empirical distribution will be below the mean and 60% will be above
the mean.

V. Measuring the Expected Return:

One important practical implication of using logarithms to
measure returns is for assessing expected returns. A common error
has been to assume the expectation of return for a security is the

same as the continuous time equilibrium return for the security.

Recall that

and

t-1
with probability 1, in practical terms. This expression is the
familiar martingale model of Samuelson [24] and Roll [23] (re-
call equation (1)).

Thus, for any LA it follows that

(R.-p)
E (e ¢ * |8

1 } =1

t-1



and that
(Rt-o)
E. (e -1 B.y) =0
Notice that
(9) ex-lzx

for all x, = @ < x < ®, with equality only when x = 0. This can

be seen by observing that

d(ex-l)/dx = e* <or > dx/dx = 1

as X < or > 0. Let us add the trivial assumptions
that R - p|et_] is not concentrated at O with probability i. Then

by (9) with x = Rt -,

(R.~p)
P 1) e = 0.

Eer (Rpelogy) < E [ (e t-1

That is
Eeoy (Relop ) <o

This is true no matter what the distribution of Rt may be and has

implications in testing on the value of ¢ by use of sample averages.



APPENDI X

Asymmetric Non-Normal Stable Laws
and Continuous Time Security Returns

A random variable X is said to have a stable law with charac-

teristic exponent a, 0 < g < 2, if

(1) 2n E(e' Y

iyt - c|t|a {1 + iRp T%T—-m (t, o)}
where - « < y <o, ¢ > 0 and

wlt, a) = tan-; o, o £ 1,

2 £n|t], a = 1,
m

The parameters vy, c ]/u,and B8 are respectively location, scale and shape

parameters (see Gnedenko and Kolmogorov [13] p. 164).
The stable laws are infinitely divisible and so they admit a
unique Lévy representation. We assume without loss of generality that

the location parameter vy = 0. Then

(2) an E(e'™) - < et o - *‘t'uz ) 1 gy,
-0 i+u
‘e, j (el TU - . Qtu_ lu|*(]+a)du
0 i+u

where ¢)» ¢

The shape parameter B (c] - cz)/(c] + c2) which equals 1 (-1) if

and only if
CI(CZ) > 0, cz(c]) =0

(see [13],. page 168). Any stable variate Z can be represented

I =X+Y



2-A

where X and Y are also stable with parameters B8 = -1, + respectively.
't is clear from the characteristic function that if X has the stable
law with parameters (y = 0, ¢, o, B) then -X has the stable law with
parameters (y = 0, ¢, o, -8). |In our representation Z = X + Y the
possible distributions for Y are the same ones as the possible distri-
butions for -X.

Now consider a completely asymmetric non-normal stable law, that
is one with 0 < o < 2,8 =-1. Since the random variable is stable,
hence infinitely divisible, it is a limit of convolutions of Poisson ran-
dom variables. So, using the Lévy representation, the logarithm of the

moment generating function

5 IO (eeu—l - _EEEH) u“(]+a)du
T+u

(3) a0 E(*® = ¢

1

substituting & for it. Thus
Ee*®) < =

for those and only those values of 6 for which the integral (3) converges.
Convergence: Consider convergence at 0.

Now : 5
eeu =1+ Bu +-§—E—- + 0 (u3)

and

su/(1+6%) = gu + 0(ud)

as u > 0 and so the integrand

62u2

2

u"(l+a)(eeu Bu ) = 14_(]+a)(

T+u

-1 - 1+ 8y + -1 ~-8u+0 (u3))

2 2 3
_ u-(|+a)( 62u + 0 {(u’))
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But

i ]

J; u(!_a)du = (Z-a)—]u(z_u) |0 = (2-&)-] <

for all a, 0 <o < 2, and so the integral converges at 0 for all 8.

Consider convergence at «. If § > 0 the dominant term is eeu and

fu
-1 - 5 = o
u = oo ]+U

Lim u-(]+a) eeu

Therefore, the integral diverges and

E(exe)

= fes]

for all 8 > 0. f 8 < 0, then

oo (Tred | Bu_) o 6u ] = -0 [”_(]+u)J

as u + » and so the integral converges and

E(exﬁ) — E(e(_e) (‘X)) <
When 8 = 0,

in E(exe) =0

and as always

() = E("0) = 1.
Conclusion: To summarize, if B8 = -1,
E(exe) <

if and only if © < 0. By symmetry, if 8 = + |

Ele

<

(%)
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if and only if & > 0. But, for any value of a finite random variable

and for all 8

*

O<xe<oo
Consider a stable law with 0 < g <2, -1 <8 < 1. Then if Z has such
a distribution we can write

L= X+Y

where X and Y are non-constant, independent, and stable with common

characteristic exponent o and 3, respectively -1 and +1. Then

E(eze) - E(eXS) E(eYe) - -

for all & # 0.

Thus, if X has a stable law with characteristic exponent

a, 0 < <2,

E(ex) < o
if and only if g = + 1,

If o < 1, there exists a finite lower limit a such that

P{X >a}l=1

if and only if B = -1. There exists a finite upper limit b such

P {X < b}

—_—

if and only if B = +1. The lower (upper) limit is -(+) = if o > 1 or

ifa<1and -1 <pg <1,



Footnotes

One aspect of this controversy is the subject of an article by
5. C. Tsiang [27] with a reply by Fama [7].

For example, Jensen [15] has argued that under one set of assump-
tions the market-trading horizon might be infinitely small. He
concludes that security returns should be measured in terms of
natural logarithms.

There is no published work on asymmetric stable laws; hence no
procedure for estimating the parameters of an asymmetric stable
law has been provided. For recent empirical evidence purporting
to show that security returns are not non-normal stable see
Clark [2]

One necessary condition for a stochastic process to be a sub-
martingale is that expectations exist. Samuelson [24] and Roll
[23] provide a discussion of martingale models for security re-
turns.

For example - Fama states:

'Since the daily, weekly or monthly price changes of a security
are just sums of price changes from transaction to transaction,
in empirical models the central limit theorem has often been
used to justify a normality assumption of returns . . . . [t

is clear that such limiting arguments also suggest the more
general presumption of a stable distributions of returns."

[6, p-33].



In this case the percentage return of a portfolio might follow
the "market model" which asserts that percentage returns, Ry,
for asset k at time t can be expressed as a linear function of

some measure of a market wide effect, Mt’

= + . =
Rkt %K Bk Mt * th ’ Et—l(th Mt) 0
where o) and Bk are constants appropriate to asset k. The per-

centage returns of a portfolio is given by

a3 lap + 8 M+ Q)

=
1l
~ MR

The distribution of wt becomes more Tike a linear function of Mt as the

portfolio becomes more diversified and Q becomes more concentrated.

Consider the case

Et_](PtIB ) =p

t-1 t-1

where {Pt} constitutes a margingale.

Thus, the expected return is

R
&y _
Et_](e ) =1

From previous arguments, the following is obtained:

R
Et_](e t) = fm exdF(x) > e”dF (x)
—o0 - ‘JO

where Rt are independent identically distributed random variables.

Now we choose an arbitrary p and note that for some C > 0,

[ee] 2 oo
f x dF (x) <C I exdF(x) < 1.
v P
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However, if F{x) is stable with characteristic exponent
¢, 1 <o < 2 and shape parameter 8 # 1 (i.e. it does not have

a thin upper tail) then

Thus, F(x) cannot be symmetric stable with o, 1 < o < 2.
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