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Introduction

Modern capital market theory has indicated that the variability of
returns of portfolios can be separated into two distinct elements. The
first has been identified as systematic variability and is the part of
return of a portfolio that is attributable to changes in the return of
the market as a whole. Another element of return variability is referred
to as unsystematic variability and is the portion of portfolio return
that is unrelated to the returns of any other portfolio. Obviously
some individual securities and portfolios have more or less systematic
variability than others because not all firms will respond to over-all
economic conditions with the same sensitivity or persistence.

Many research studies have found that systematic variability accounts
for approximately 30 percent and 40 percent of the total variability of
individual common stock returns over time, whereas the unsystematic
variability contributes the rest. However, for targe, well.diversified
portfolios it is more likely that 80 percent and 30 percent of total
variability of portfolios return can be explained by the variability of
market returns. Thus Merril Lynch observes,''Iln a typical diversified
portfolio of thirty or more common stocks, diversification eliminates
so much of the specific risk that roughly 85-90% of all risk (in the
portfolio) is market risk ... " [9, p. 6]. Evans and Archer conclude
that "'much of the unsystematic variation of return is reduced by the
time the eighth security is added to a portfolio." [4, p. 7671 Finally,
Cohen, Zinbarg and Zeikel note, ''The conclusion for practicing Investment

managers seems clear. While portfolio diversification can substantially



reduce the nonmarket risk of common stock holdings, the law of diminishing
returns takes hold very early in the process." [3, p. 773].

Thus, it is clear that diversification reduces the nonmarket element
of portfolio return variability and the reduction of variability appears
very quickly. Eventually, as diversification continues, the variability
of portfolio return will be almost exactly proportional to the variability
of the market returns.

The purpose of this paper is to re-examine the question of how many
securities should be included in a portfolio. There is no doubt that
increasing the number of securities in a portfolio will reduce the non-
market related return variability. However, there are several areas of
controversy. For example, it should be recognized that the term ''variability"
can have different definitions. Furthermore, the ability of diversification

to eliminate unsystematic variability of return is important only if this
reduction can be incorporated into predictions of future risk. In
addition, the method of portfolio formation may determine the extent to
which diversification enables portfolio managers to more accurately
assess future risk.

tn Part 1, a new look is taken at the relationship between diversi-
fication and the reduction of portfolio variance. This examination tends
to confirm earlier research that only moderate amounts of diversification
are needed to obtain most of potential reduction in portfolio return
variability. Part 11 examines the problem of predicting portfolio
variability using only historical data. As part of the examination, the
symmetric stable model and the subordinated stochastic model are compared

to each other in the context of developing procedures to improve the

accuracy of predictions. The results of this part of the paper indicate



that the symmetric stable probability model can be better utilized to
improve the accuracy of prediction of future portfelio risk than the sub-

ordinated stochastic model.

I. Diversification and the Reduction
- of Unsystematic Variability

In order to predict the effect of diversification on the return varia-
bility of a portfolio we must first establish a model for describing how
the returns of securities are generated. A common procedure is to assume
that the returns on individual securities are distributed normally and
that the all interrelationships between securities stem from a common
market factor that affects all securities. The model incorporating these
assumptions is referred to as the market model; and it posits that the

return on a security i, R, , at time t is linearly related to the return
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where the Ei indicates an average Ay i=1,2, ..., N. The standard de-

viation of an equally weighted portfolio of N assets is

) o(r ) = (ls;1202R ) +37(e /M2

From the portfolio standard deviation equation of {(4), it is clear that
the number of assets in a portfolio can have a profound effect on port-
folio standard deviation; hence diversification is likely to be a very
effective tool for reducing portfolio variability.

From Figure 1, it can be seen that the predicted reduction in port-
folio standard deviation as the number of separate assets included in the
portfolio is increased is quite pronounced at the early stages of diver-
sification and becomes less and less as more assets are added to the portfolio.
This relationship has led some writers to conclude that diversification
beyond 10 or 15 assets is superfluous and should be avoided.T To test this
assertion, the empirical association between the variability of portfolio
returns and the size of the portfolio must be examined. We now proceed
to assess how diversification reduces return variability under a normal
probability model. Note that under the normal probability hypothesis
it is suffictent to measure the variability of portfolic returns as the

standard deviation {or variance) of portfolio returns.

A. The Sample

The data consist of dividend adjusted daily logrithms of return
relatives for 489 common stocks listed on the New York Stock Exchange
and the American Stock Exchange from the period January 2, 1968 to
September 30, 1969 -- a period of 412 trading days. There are 411 ob-
servations for each security. Accompanying these relatives are the numbgr

of shares traded daily for each security.



Figure 1

A Graph of Portfolio Standard Deviation
as a Function of Diversification

o = Standard Deviation

N = The number of separate assets
included in the portfolio



B. Forming Portfollios

Portfolios were formed by, first, ordering the set of individual
securities randomly. After the securities were randomly ordered, port-
folios of size N were formed by grouping the first N securities together
and weighting each one equally to form portfolio 1; and repeating this
grouping procedure for the second N securities and so on.2 Portfolios
were revised daily to maintain the equal weights. The portfolio form-
ation procedure continued for all sizes N =1, 5, 10, 15, 20, 489; so
that, there were 489 portfolios of | security, 97 portfolios of 5 securities,
48 portfolios of 10 securities, 32 portfolios of 15 securities, 24 port-

folios of 20 securities and 1 portfolio of 489 securities.

C. The Initial Results

To see how diversification can reduce return variability, the
standard deviation, skewness and kurtosis of the return distributions have
been computed for each portfolio.3 To describe the results, the average,
the .10 decile value and the .90 decile value of each of the measures of
return variabllity are displayed in Table 1. The mean-standard deviation
market model developed in (1) to (4) predicts that the standard deviation
of portfolios will decrease as a function of the number of assets included,
at the rate 6%)1/2. Moreover, this model predicts that skewness values
will be equal to zero and kurtosis values will be equal to 3.

In some respects, the results of Table 1 are consistent with the
findings of others with regard to the effects of portfolio diversification
on the portfolio returns variability and, in particular, consistent with

the predictions of equations (1) to (4). Standard deviation of return de-

creases relatively quickly as the number of assets in the portfolio is increased.



Table 1

Portfolio Diversification
and Measures of Return Variability

Standard Deviation

Portfolio
Size F.10% Average F.90
1 0.0132 0.0258 0.0367
5 0.0105 0.0137 0.0162
10 0.0093 0.0113 0.0134
15 0.0089 0.0103 0.0115
20 0.0088 0.0098 0.0106
L89 -- 0.0082 --
Portfolio Skewness
Size F.10 Average F.90
1 -1.430 0.787 3.009
> ~0.4k4 0.022 0. 4hk
10 ~0.543 0.045 0.542
15 -0.641 0.089 0. 44k
20 -0.345 0.144 0.345
489 0. 44k
Portfol io Kurtosis
Size F.10 Average F.90
1 3.915 6.697 10.001
5 ©3.339 L.608 5.362
10 3.239 4.077 4 814
15 3.294 L.113 4.737
20 3.390 L.200 5.048
L8g 4.905

*Corresponds to the .10 fractile value.



This tendency is more closely examined in Tablie 2, where the reduction
in standard deviation is computed as a percentage decline over the
various N values and compared with the percentage reduction predicted by

equation (4).

Table 2

The Incremental Percentage Reduction
of Portfollo Standard Deviation

N Actual % Decline Predicted % Decline
1 0 0
5 69.11% 55.29%
10 13.61 13.10
15 5.38 5.80
20 2.91 3.45
489 8.98 22.36
total 100.00% 160.00%

The fit is not remarkable but close enough so that a preliminary

conclusion can be put forth that diversification reduces the dispersion

of the distribution of returns on portfolios as predicted by the mean-
standard deviation version of the market model of equations (1) to (4).
One explanation for this result is that a law of large numbers is operat-
ing on the error term in the market model of equation (1), so that the in-
dependent effects incorporated in these error terms become more and more
offsetting as the portfolio is more diversified. For portfolios including
at least 15 different securities approximately 75% of the total possible

reduction in standard deviation has taken place (and a 93% reduction in

variance).



Several unpredicted results appear in Table 1. Skewness of portfolio
return decreases to approximately zero, on the average, as portfolioc size
increases to five assets. Thus the distribution of portfollo returns
becomes approximately symmetric for moderately diversified portfolios.
However, as portfolios become more diversified, asymmetry reappears and
tends to persist. Moreover, the .10 and .90 decile values of the skewness
values for the portfolios do not change as portfolio diversification in-
creases. A portfolio manager is no more certain that a portfolio will

exhibit symmetric returns for 20 securities than for 5 securities.

Another interesting result is that high values of the kurtosis of
returns for portfolios tend to persist for well diversified portfolios.
Recall that under a normal probability model, kurtosis values should equal
3, and for nearly all securities, kurtosis is much higher than 3 {only
1 security has kurtosis g}). The existence of kurtosis in the distribution
of portfolio returns suggests that the relative frequency of return ob-
servations is greater in the tails and in the center than would be pre-

dicted if returns were normally distributed.

I'l. Predicting Portfolio Risk and Diversification

The results of the previous section reveal that the standard deviation

of a portfolios' return not related to a common market factor is greatly
reduced with moderate amounts of diversification. This provides empirical
substance to the notion that investors should generally diversify, since

as the number of securities included in a portfolio increases the contribution
of the standard deviation of any Individual security to the standard deviation
of the portfolio becomes hardly noticeable. However, the results also support
the notion that diversification beyond 10 or 15 securities achieves a non-

negligable reduction in standard deviation of returns.
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return variability because of the persistence of skewness and kurtosis
in the distribution of returns for well diversified portfolios.

This section examines the ability to predict return variability for
portfolios of varying degrees of diversification from two points of view.
First, it is assumed that the basic probability model underlying the dis-
tribution of portfolio returns is from the class of symmetric stable probability
distributions. Second, it is assumed that the probability model generating
observed portfolio returns is a particular subordinated probability process.
Consequently, the paper departs from the point of view developed in Part |

where it was shown that standard deviation of returns decreased as the
number of separate securitigs contained in the portfolio.
A. The Predictability of Portfolio Variability Under a Symmetric
Stable Law.
A significant amount of empirical evidence exists indicating that
security returns are symmetric, stable random variates.q Unfortunately,

most of the evidence suggests that security returns are not normal and the

standard deviation is not an adequate measure of security return variability.

If it assumed that portfolio return Rpt’ is symmetric stable with characteristic
exponent &, the portfolio standard deviation equation (4) can be easily

modified as

(5) U(Rpt) = [,Fi’ac (X(Rmt) '*'EU‘—(E;—.T%U.]]/C{

Using {(5) it is clear that portfolio dispersion, U(Rp ), is reduced as N

t
is increased as long as a>1.6 Thus, under a symmetric stable law we would
predict that diversification generally reduces the effects of the independ
ently distributed error term of (1) and thus it reduces the total dispersion

of portfolio returns in (5). Here the exact nature of the reduction of

portfolio dispersion depends upon o. For a closer look, consider more the
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last term of (5), or

I = s e PRV
(6} ole,,) = L) ey ) *

Portfolio dispersion o(e ) can be expected to decrease with increases in
pt
N, conforming to

N /o
7 &)
N
An important question is which characteristic exponent provides the best
explanatory power in describing how G(Ept) is reduced as N increases.

The Best Fitting Stable Law. In Section | it was found that the

standard deviation of return for portfolios tended to decrease as predict-

ed at the rate of (1/N)1/2. This result suggests that the normal probability
assumption underlying many models of common stock returns can provide

useful predictions concerning the efficacy of real-world diversification.
However, it is possible to challenge this assumption and to test it directly
since normality is the special case of o = 2 and o can be estimated in-
dependent of o. That is, it is possible to predict the rate of decrease

of 0 as a function of a and N by using equation (7). To illustrate, for
N=2, o =1.5equation (7) predicts that G will decrease by 21 percent,
whereas, for N =2, a = 2 (the normal case) equation (7) predicts that o

will decrease by 29 percent. Using the Fama-Roll estimator g, in Tahle 3,
the average values of o have been recorded for portfolios size N.7 Also
included, are the actual percentage declines in 5 as portfolio diversification
increases. Table 4, compares these actual percentage delcines in estimates

of portfolio dispersion with the percentage declines predicted by the

various hypotheses concerning a. The method of compariscn is to subtract
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Table 3

The Effect of Diversification on
The Dispersion of Portfolio Returns

Average
Portfolio Portfolio | Percentage
Size Dispersion © Decline
1 0.0132
5 0.0084 57.00%
10 0.0071 15.50
15 0.0065 7.00
20 0.0062 3.80
489 0.0048 16.40

Table &

Predictive Error Under Different
Characteristic Exponents

Characteristic Predictive
Exponent Error#
1.0 0.202
t.1 0.095
1.2 0.078
1.3 0.089
1.4 0.107
1.5 0.126
1.6 0.143
1.7 0.159
1.8 0.173
1.9 0.185
2.0 0.196

“Predictive error is calculated as the average of the sum the squared de-
viations of the predicted percentage decline and the actual percentage de-
cline in o as a function of N.
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the actual percentage decline from the hypothesized percentage decline

at each a for all N, sum the square of this difference over N and divide

by N -- the statistic is commonly called the mean square error.

The best fit over all N is for o = 1.2 casting serious doubt upon the

adequacy of the norma) model. 'n another study it was found that a generally

took the bounded values 1.4 5_& < 1.6 for the securities in the sample [11].

Predicting Portfolio Risk Under the Stable Model. The time interval

is divided into two equal sub-intervals of 206 trading days. Using the

Fama-Rol| estimator of o, portfolio dispersion has been estimated for all

portfolios of N =1, 5, 10, 15, 20, 489 during the first 206 trading days

of our total sample (starting from January 1, 1968). Repeating the pro-

cedures of Part I, the first portfolio of N securities consisted of those

securities with N highest estimates of 0. The second portfoclio consisted

of those securities with the next N highest estimates of ¢, and so on
until the remaining number of securfties was less than N.

Finally, the Fama-Roll estimator of ¢ is re-computed for all portfolios

in the second time sub-interval. Consequently, for each portfolio there

are two estimates of g corresponding to the two time sub-intervals,
2

D.W.
Portfolio Size Bi R
] .7295 .639 1.227
5 . 7531 .765 1.657
10 .8239 .890 2.438
i5 .8439 844 1.348
20 . 9099 .986 1.759
B, = Slope coefficient estimate
R2 = Coefficient of determination (adjusted for

degrees of freedom)

D.W. = Durban Watson statistic



Portfolio Size
1
5
10
15

20

Table §

Regressions Estimates Using
The Stable Probability Model

B, rZ
|

.7295 .639

. 7531 .765

.8239 .890

.8439 BLL

.9099 .986

Slope coefficient estimate

D.W.
1.227
1.657
2.438
1.348
1.759

Coefficient of determination (adjusted for

degrees of freedom)

Durban Watson statistic

16



Table 6

Regression Estimates of Return
Dispersion and Volume of Trading

Value

a 01315

b .03229

R% 07729

T 5.65638

D.W. 1.86865

N 371
a = intercept
b = slope
R2 = coefficient of determination (adjusted in degrees

of freedom)
T = student t statistic
D.W. = Durban Watson statistic

N = the number of securities
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Table 7

Regression Estimates Using
The Subordinated Stochastic Model

Portfolio Size Bi R2 D.W.
1 L7133 .667 1.355
5 .8108 813 2.097
10 .8208 L7hh 1.870
15 .8373 .764 2.088
20 . 6973 .752 1.485
Bi = The intercept estimate
R2 = The coefficient of determination (adjusted for

degrees of freedom)

D.W. = The Durban Watson statistic

Consider the coefficlent of determination. For completely undiversified
portfolios it has an average value equal to .667. For portfolios that
include 20 distinct assets the corresponding average value is .752. Thus
there is marginal improvement in one's ability to predict future port-
folio dispersion with well diversified portfolios when compared to complete-
ly undiversified portfolios. In fact, all benefits of diversification occur
with portfolios of no more than 5 assets. So far the grouping procedure
suppiied by the subordinated probability model does not appear to be standing
up too well. This seems to be the case because one's abflity to predict
portfolio dispersion is much greater when relying solely upon the stable
probability model,

Next examine the regression coefficients of each of the five regress-

ions. The non-stationarity, referred to as regression towards the mean,
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remains. Remarkably, the drift in dispersion of return values over time
is greatest for the better diversified portfolios. Thus, we can not be
happy with the subordinated model and we reject it as a tool to enable
portfolio grouping procedures to allow for increased portfolio dispersion

predictive abillty.

I1l. Conclusions

This paper has re-examined how diversification reduces risk. The
traditional mean-standard deviation probability model provided inadeguate
measures of return variability and the symmetric, stable non-normal prob-
ability model was utilized. It was shown that diversification reduces the
prediction error of assessing future risk. However, the usefulness of
diversification depends upon the particular procedures used to form
portfolios and how historical values of return dispersion are extrapolated

into the future.
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Footnotes

TFor example Francis [B] states, "If 10 or 15 different assets are selected
for the portfolio, the maximum benefits from naive diversification have
most 1ikely been attained - further spreading of the portfolio's assets
is superfluous diversification and should be avoided."

2Reca]ling the purpose of the experiment, the portfolioc formation method
provides a completely naive, mechanistic portfolio averaging strategy
and avoids using commonly used portfolio optimization procedures.

3Skewness is computed by the following statistic
(% below mean - l) '

2 N
100
1/2

which has a normal distribution with mean zero and variance one.
Kurtosis is the fourth movement divided by the square of the variance.

l‘Fc;r example, Fama [5] and Roll [10].
5For a discussion of this point see Fama and Miller [6].

6What is referred to as dispersion in this paper is the scale parameter
describing a stable law with characteristic exponent a. The scale

parameter corresponds to the standard deviation when returns are normal
and o = 2.

7Letting o be the dispersion parameter and z a random variate and x its
standardized variate

Xe T Xy_g = (zf - Zl-f) /o

where Xg denotes the f fractile of the x distribution. Restating the

result
o= {zg -z g) 7 O - xLg)

How since x. = X.og Is nearly constant and equal to 1.654 for o > 1
an estimate of o is {Fama and Roll [7], p. 822-824)

0 = (2, - 2. ,9) 1.657

where z_ refers to the sample estimate of the f fractile. Note ¢ is not a
function of a.

8For example, see Westerfield [11] and Clark [2].



