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Portfolio Turnpike Theorems for Constant Policies

The interplay hetween uncertainty and dynamics provides some of the
most difficult and important problems in financial economics. The
dynamics of portfolio policies is at the core of this area and has been
examined by a number of authors.l This paper will study a subclass of
dynamic portfolio problems coming under the heading of turnpike theory.

In its most general form, the portfolio turnpike problem seeks the
accumulation of wealth so as to maximize some criteria applied to wealth
at a terminal date. The path of approach to the terminal wezlth is of
concern only in so far as it leads to a higher terminal valuation. The
virtue of the turnpike problem lies largely in the fact that it is the
simplest context within which serious dynamic problems about optimality
under uncertainty can be posed and its solution often provides the
basic intuition for more complex problems.

To explicate all of this, the general portfolio turnpike problem
takes the following form. We seek to maximize the expected (von Neumann-

Morgenstern) utility, U (:) , of random terminal wealth, W

T s over g

T

horizon of T periods. Thus, if A denotes the feasible set of port-

T

folio policies, <@> , available in the T period problem, we seek

max E{U (% )} ., (1)
<a> £ AT T

Turnpike theory is largely devoted to the study of the asymptotic
behavior and properties of the solution to (1) for large T, and that

will be the central focus of this paper. Section I specializes our



problem still further. In particular, we will be exclusively concerned
with constant portfolio policies, i.e., policies that are unchanging in
each period for a given horizon, and we will also assume that the
stochastic environment is independently and identically distributed
across periods. In a second paper, Ross [ 19737, we develop the general
portfolio turnpike problem. Section II studies some familiar stationary
solutions to the general turnpike problem that coincide with the constant
solutions of our problem. Section ITT develops the central theorems of
the paper and Section IV relates our findings to the turnpike literatume
of growth theory. Section V summarizes and concludes the paper and

describes some areas of future research.



Section I

The problem we will concern ourselves with is that of examining
the asymptotic properties of the solution to (1) for large T. To
facilitate this, we will begin by assuming that (up to a cardinal
equivalence)

UT(W) = Ulw)

so that the terminal criterion can alter by at most some discount
factor and a location factor as the horizon is altered. The stochastic
investment environment is conceived of as follows. There are two assets,
one of which is riskless and offers a return factor of

r >1
so that v - 1 is the interest rate. The other asset is risky and
offers a randem return of

r+ %,
i.e., x is the random return premium over the riskless asset. The
individual is assumed able to form portfolics of arbitrary amounts in
these two assets, although generally no borrowing (or short sales) will
be permitted. The random return is then given by

(1 ~a)r+oale+ %) =1v+a%,
where © 1is the proportion of wealth placed at risk.

Proceeding recursively, we have

T
W= w [r + o % ]
T T-1 T T

3
where subscripts indicate time periods, and the horizon is superscripted.

The general portfolio turnpike problem can now be written as

max E{U(ﬁT)} R (2)
<aT>EAT



where
W N [+T"]
W= W o %
T T-1 v T T
T
= W g {(r + a, xT).

The two basic simplifying assumptions of this paper are:
(i) < %T > 1s a vector of independently and identically distri-

buted random variables,

and

(ii) the set of policies we shall deal with are constant port-
folio policies, i.e., ui = aT, a predetermined constant for each
horizon.

Assumption (i) needs little explanation. Its principal weakness
is that it abstracts from intertemporal dependence and we shall have
more to say about it further on. Assumption (ii) abstracts from a
somewhat more serious  induced dependence. In general, we would expect
that for any finite horizon afj, the optimal policy for the 7tth period,
will be dependent on the wealth inherited from the previous period. Thus,
T T )

= O
ur T(wT—l

T
(With a stochastically interdependent environment a

¢ would also depend

on the current state of the world but assumption (i) permits us to
ignore any such dependence.) Nevertheless, it is our contention that
assumption (ii) is a useful starting point for the development of a
complete turnpike theory. For one thing,in a complex problem, where
the computational costs associated with finding the true optimal policy

sequence might be exorbitant, this simpler problem is of interest. More



importantly, it permits us to develop a class of policies analogous
to the proportionate turnpike paths of economic growth theory. In
effect, we might conjecture that solving the portfolio turnpike problem
under assumption (ii) is a technique for finding the turnpike.2

The central problem of turnpike theery is that of analyzing the
behavior of aOT for large T, and in our problem we examine the
cptimal ol for large T. As we shall see, the solution to this latter
problem, as for turnpike analysis in general, is a sufficient justi-
fication for posing the problem in the Ffirst place; the solution will
provide us with some deep insights into the dynamic behavior of optimal
stochastic programs.

We conclude this section, then, with our specific problem

max  B{U(H_)} , (3)
o T
where
T
ﬁT:wg(ri-aiT). (1)

. T . T
The solution to (3) is denoted o and we will studv how o behaves

for large T.



Section II

There are a number of specific cases for which the sclution to (2 )
is known. In particular, if the utility functicn is a power function
of the form

Ulw)

or

U(w) = log w,
then (see Mossin [[19687) the constant solution is unaltered by the

horizon and is, in fact, the solution to the general turnpike problem,

To see this, deleting superscripts, we have
T

E(UGr))} = 2wf B LD (v v a2 )78)
3] 1 T T
T T
:%WB E{§Cr+a”{ iT)B}
T
= %—E{WT?l AB(aT)},
where
Ay (@) = Bl(x + aiT)B} . (5)
X

1
Now, 7 A {a) is concave, since

2

Aé’ {(a0) = E{(B - D)(r + ow?;)B"2 ¥t <0, (6)

and has a unique maximum attained at o_ . (We will assume throughout

B

that the maximum is attained in the interior of [0,17; see the argu-

ment at the beginning of Section TII) Hence, by backwards induction



and

The argument for U(w) = log w is similar.

The simplicity and tractability of the power functions have long
commended them for study. Furthermore, it can be shown that they have
desirable axiomatic properties associated with stationarity as well.
This suggests that a useful way to study the turnpike problem is to

consider combinations of these "good" functions.



Section ITT

Leaving the logarithmic case for last, we will begin by considering

terminal utility functions of the form

B

Ulw) = % a.wi
w) moasw b, (7)
i
where the Bi are ordered,
> Do, > N

B1 82 Bn

For (strict) concavity and monotonicity, we must have

Bl <1,
and monotonicity will require both

al >0 as Bl z 0 (8)
and

a S0 as B $o0. (9)

n n

If (8 ) did not hold U(w) would decrease for large w and if
(9) were violated it would decrease for w near 0. As a final
point we will define U(w) only on the positive orthant and assume
that it is an improper function taking the value - on the negative
orthant. This will immediately bound the portfelio weight, a, from
above, if there i1s mass to negative values of %. By menotonicity
and concavity it can be shown that o will always be positive so that
without loss of generality, we will assume that a is restricted to

the haif-open unit interval, [0,1) .

Our study of the turnpikes associated with functions of the form of

( 7) will depend on an understanding of the behavior of the functions

AB (a) Introduced in Section IT. From (6 ) it is easy to see that



‘concave for 0 < B8 < 1
AB (a) is and

convex for B <0

Depending on the values of B, and B, » the work divides naturally
into three cases and we will prove a preliminary lemma that covers each
of these cases. The lemma tells us that the g1 and Bn components

dominate the intermediate values.

Lemma 1: If

B, > 82 > B

1 3 °

then (36>0) (Vael[0,1))

Ag (a) < A, (@) V A, (a) . (10)

In particular, setting By = 0 yields

Ap () + 8 <« Ag () v 1, (11)
2 1

and setting By = 0 yields

Ay () +8& < A, (a) V 1 . (12)
8o B3
Proof: TFor any =z>0 , ZS is a strictly convex function of B . This

can be verified by differentiation,

1z {z'} = Z8 (log z)2+zB_1 > 0 . (13)
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Since AB(a) is (by definition (5)) an average of such functions
it, too, must be a strictly convex function of B . Proposition (10)

is a consequence of this convexity.

Compactness now assures that (Ve < 1)  (11) and (12) will hold
on [0, ¢1 , and this result extends directly for (11) to [0, 1)
A special argument is required for (12) since B, < 0 implies that

AB (@) 2 as 4 > 1. Tn this case, however, by Jensen's inequality
2

1]

A (o) E {{r + a§)83]

B3

8
E{[(r + a)B27 3/%2 5 (11)

v

83/’
[a; ()] B2,
2
which guarantees (12) for Ag (o) bounded above unity.
2

Q.E.D.

Now, consider solving the constant turnpike problem (3) for

a utility function of the form



- ll—

Uw) = aleI + aszZ . (15)
For a constant policy, o, we have
E{U%_ )} = a, E{# 81} + a, B{w S2}
T 1 T 2 T
8 T
= apr L E{ T (» + ax )P )
1
T
+ azwsz EL I {v + ax )82 }
T
1
By T 8
= aw 1y E{{r + az ) 1}
T
1
T
+ azw82 I E{{r + a% )82}
T
1
. 81 T
= EI.IW [ABI (05)]
B T
+ a2W 2 [AB (05):'
2
Differentiating with respect to « yvields
sE{U(w T=-1 3A
UG awl (A, (23] =8
o 1 Bl aOL
(16)

B -1 %,
+ T a2w [AB2 (Ot)] a

3

and the first order condition for a maximum is given by



- 12 -

JA _ oA
B ¢ azw82 [AB (GT)]T * 52

= 0.
1 do 2 aa

T -
ol Tag (ah7

From (16) it is easy to see that if Ag, (a) > Ag, (a), then for

large T the behavior of aE{U(ﬁT)}/Ba is governed by

dA
aBI and, conversely, if ASI (a) < ABZ (a), then the behavior is
o
8A
governed by B2 for large T. This observation will engble us to
a0

find the turnpikes for functions of the class (15).

Figures 1 and 2 display two typical cases of ASi functiocns from
which composite expected utility functions are formed. In Figure 1
we have 1 > BI > 82 > 0 and the assumption is made here as it is
throughout the paper that aBl and aBz are both internal to the

unit interval. Consider autility function of the form (15), where AB
1

and ABZ are as in Figure 1 and where, for the moment, we assume that
al  does indeed converge to a turnpike a®. Could a¥* be outside of
[aBZ, aslj ? Clearly not, since, outside of this range, by (18),

both terms of BE{U(QT)}/BQ are positive

for o < oag and negative for a » msl . Could a®* be
2

less than O ? Lemma 1 assures that ABI (a} > AB2 {a) for
1

o € [aBZ, uslj as in Figure 1. It follows that for large T,

BE{U(ﬁT)}/Ba has the sign of BABI/Ba which is positive everywhere
except at usl « If there is a turnpike, then it must be

a® = asl

A similar line of reasoning applies for the situation of Figure 2

where BI > 0 > 82 .« Recall that we will have a, < 0 so that our
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interest is in minimizing rather than maximizing the Ag_ contribution.
minimizing rmaximizing 2

T

Clearly then we must have o% E-aﬁl since we will always set o < a

g1 »
and, as before, we must Iin fact set

o = o,
B1

The analysis is even more direct than the use of the finst order
condition would suggest. In either Figures 1 or 2, it can be seen that
if of # ag, then we can improve E{U(ﬁT)} by moving closer *to ag. -
This will raise ABI (a) which can be thought of as the growth Ffactor

associated with the w°i portion of the utility function and, conse-

quently, E{U(ﬁT)} will asymptotically grow at a higher rate. This

viewpoint is exploited in our first theorem.

Theorem 1: Let

n »
Ulw) = % ainl

i=1
with Bl > 0, Bl > v > By, and with
A= hg (og ) > Ay (o)) (17)

if 8 < 0 . It follows that

%8, (18)
uniformly on compact intervals of w not containing 0.
Before proving Theorem 1, we should note that assumption (17)

simply assures that AB] and Ag  are as in Figure 2 for B8, < 0.

For B > 0, Lemma 1 proves (17).



Proof:

subsequence

Suppose, to the contrary, that

- iu -

(e > 0)

By the strict concavity of Agy s (28 > 0) such that (Vg)

’OL - chll

€  implies

%

A81 (a) < ABl (aBl) - & = A" -

In other words, if the policy is bounded away fronm aBl , then its

8§

growth factor is bounded below the maximum growth factor.

It follows that on the subsequence

E{U(%T)}

From Lemma 1, for

T
Asi (a™)

and from Lemma 2, for &

| A

<

~ B-
i a; E{WT i}

T
) a.wBl E{ N (r + uTiT)
S 1
. T
g ainl [ABi (aT)]
1

ap®l [ag (D7

. T
I awtl [Ag (7))
i1 1

aprl fat - 81T+

apet [a, DT .

i1l i
B; >0, (4 > 0) such that
o, (aBi) < a'-s,
;3 <0, (36; > 0) such that

such that on a

(19)



7=
>0
—~
=4
~—
A

Cag_ (6" - 851 v 1 - 68,7

| A

Chg_ (o)) - 831 v [a% - 0.7,

where we may take 8, < Si .

Hence, along the subsequence,

n{utir)} ax - g7
lim sup L < lim sup alwsl P2

ra=]T
: ABn (al) T
n _

. T N T
[Agn(a )-841 v [A%-8;]

+ by la.[wBi .
i#1l,n * A%

Ag (o)
- Bn n
lim sup a.w A

T
AB (aT) - 64
. n
v E el |
i#1l,n A%
B T
T
) ABn(a ) 8
= lim sup ——;;———- a wn {(20)
T
] [Asn(aT) -8
+ b ’a |wh1 7
1#1,n L ABn(a }
o[BG ] ?
= 1lim sup ayw O o

| A
[e



Asymptotically, then, on the subsequence E{U(WT)} does not grow

as rapidly as [A*]T - On the other hand, if we follow a policy of

setting

i#1
(21)
T
T
a1w81 + ¥ ainl Bi “7Ay
i#1 Ag, (aBI)
B1

Toagw .
Thus (21) viclates optimality and we must have

T
o > ael

pointwise. To prove umiform convergence we could simply take a sub-

sequence of w as well and the proof would be unaltered with (21)
exceading

Lim inf  awbl > 0 |
Q.E.D.

It can be seen from the proof of Theorem 1 why convergence is

not wniform on all of RY . As y = g , the relative weight an/wsl -



and the ol policies can be kept arbitrarily close to ag by choosing
n

a rapidly enough falling w sequence.
Theorem 1, however, far from finishes the story. TFigure 3 depicts

a case where By > 0> 8, and
Ag lag ) > Az (ag )
82 81 Bl 81
Clearly now the turnpike can no longer be at og, since that would

imply that E{U(ﬁT)} > -» ! Where then?

Tt is tempting to guess that a% is the point where the vertical

distance Ael(u) - Agz(u) is maximized, but a little thought reveals

that this cannct be. Raising o closer to the o value where ABI
and ABZ cross clearly raises the major growth factor ABI(u) and
causes E{U(ﬁT)} to grow at an asymptotically faster rate. In general,

then, we can prove the following thecrem.

Theorem 2: Let

n B‘
Ulw) = I amwi
i=1
with By » 0, By > ... > Bn , Bp <0 and with
Aﬁn (asl) > AB1 (uBI) . (22)

It follows that

al - o

where A% = Ay (o%) = A81 {a*), wuiformly on compact intervals bounded
n

away from the origin. (Wotice that o%* is unique.)
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Proof: We first show that (Yae [0,1))

ABi (a) < ABI (a) V ABn (a) ; (23)

with a uniform strict bound if i#1,n .
By (21) we have

{a) > A (o) = r81>l

A
B1

8, (a} v ABn

and from Lemma 1, (23) must hold for all B;> 0 . Similarly, Lemma 2
implies (23) for B; < 0.

Suppose, now, contrary to the theorem, that (Ie > 0) such that on

a subsequence of optimal constant policies

T

| o —ax ] s ¢ (2u)

By the strict concavity of Ag; and the strict convexity of ABn

It

there exists & > 0 and A A, (a) < A* gsuch that (Va) Ia—a*J > €

B1
implies either

g, (a) < A - 8
or (25)
ASI(Q) < ABH(O:) - 8 ’
< 1,

depending on whether o § ot |,

It follows that

E{U(w,)} L a, E{wTBi}

i

T
apl [ag (1T + e [ag (a3

1

+or aptl fag (M7
i#1,n *
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< a1 [A - 6T 4 1 api [a,.(eT)IT)
i#1 *

VCapflTag ) - 6T ¢ aufn i, D7
n

b agel fag (DT
i#ln 1

Applying (23) and (25) we have

c{uGi )} R
T T
i)

rait A

Ag.(al) '
+ E aiwsi -ﬁ—i.c.x___J g

He

W
|_|
=

T
T _
Ag (o) - 8 T

v { alwsl Bn”* : -] + a WB ABn(a ?]

A B A

A
T

- T

+ ¥ a wei fEiEE_i
i#li,n 1 A

Our task now is to display a superior alternate policy sequence

T . ~
<a"> , but letting ol = § vields

E{UGH)} 27 . )T
kil ) alwel[‘;&] + T aiwsl [ABi(u)J
A

rajT



This contradicts the optimality of the original policy and we
must have

(]T > u_*

pointwise. Uniform convergence is proved as in Theorem 1.
GQ.E.D.

The case depicted in Figure 3 is important for several reasons.
To begin with it disproves an appealing coenjecture that grows out of
some vesults of Mossin [1968]. Mossin shows that for utility functions
with linear risk tolerance,

Uf

GT; aw + b

. . . T .
the optimal complete turnpike solution oy converges to the turnpike

associated with the constant relative risk aversion function

Ul
- -[-J—'; = aw
for a > 0 . This is simply the power function and log class we have

been analyzing. One might conjecture, then that the same result would
hold for

U"
S Tn T oawt f(w) ,

(28)
where in the sup norm,

sy [ < b < =,
on the positive orthant.® That this i1s not the case can be seen by
constructing a counterexample of the form (15) with By > 0> 8, . It

is possible to choose values of B; and B, such that (28) is satisfied

but, nevertheless, Figure 3 obtains. The constant a is now (1 - 81),



the coefficient of relative risk aversion associated with WBI . By
focusing on this term, however, we are concentrating only on the behavior
of U(w) for large w and ignoring the losses associated with WBZ for

w small. Under the postulated conditions these losses swamp the gains

Tor the policy GBI

Second, Figure 3 illustrates a lack of closure for the class of
optimal constant policies with a® as the turnpike and fan[ > a;
In this case, although the optimal policies approach ao¥% , it would

be folly to actually get on the turnpike since

2y [ag (@01 + 2 Tag (@917 = (o) + a)[Ag (a0

In other words, it is best to converge to a path whose utility goes to

-® . By contrast, in Thecrem 1 a straight-down-the-turnpike constant o
policy does as well in an asymptotic utility sense as the optimal policy.
This is not, however, a valid argument for following such a policy,
see Goldman [1974].

The final case we consider, where all Bi < 0, is depicted in

Figure 4. Once again we require a a, < 0 for monotonicity,and now

1 ]

our objective is to cut losses. The appropriate turnpike policy is that

one which asymptotically minimizes the maximum A loss. TFormally,

8.

1
we have the following theorem.

Theorem 3: Let

il
Ulw) = T a.bi



AQ,(‘:«)
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with 0 > By > «.. > By . It follows that
T .
o > g¥
95
where o® 1is set so that (Va)

A% = sup Ag. (a®) < sup Ag. (o) .
: B: = Bi

Convergence is uniform on compact intervals bounded away from the
origin,
Proof: By Lemma 3, we have that for all i#1,n and all ae[0,1)

ABi(a) < Asl(a) v ABn(u) .

and we can equivalently define o by

Asl(a*) v Asn(a*) < Agl(u) v ABn(a)

Suppose, as before, that (¢ > 0) such that on g subsequence

By the strict convexity of AB- » (38> 0) such that if

1

o - g > €

then

Afa) = Ag (o) Vv Ag (a > A% + &
1 1

By (14), following Lemma 3, then, we have that



E(UG,)}

[a(aT) T

On an alternative path where we keep al

however,

E{UGIp)}

[aaT) 7"

| v

- 23_

NEITRCONN
7 a_wBl _}
i 4 a(al)
B Bn
[alw v aw ]
T T
Ap. (™)
I a wBl E} ‘]
l?-ll Nl A(aT)
B B
aw 1 v aw n
o .

a constant at

T
8 AB.(aﬂ)
Y oa.w 1 .__.1___
it ACal)
T
6 By A%
(alw 1 + anW ) [m]

C g ()]
o
z [ai’wBi [-mii____}
i¥l,n Alal)

(aleI + aann)

I Ja, Wb L'ﬁfyi“‘]
i#l,n 1 A% + §

o

L}

k]



contradicting optimslity. This result implies pointwise convergence
and the argument of Theorem 1 establishes uniform convergence.

Q.E.D.

The results obtained above seem very restrictive but fortunately
they can be ecasily and substantially generalized. There are sevenzl
routes to such generalizations. One method is to pass directly from
finite sums to infinite sums and then *o their closure, the integral

form. When we do this we obtain funections of the form

. (27)

where U(.) 1is now the Mellin-Stieltjes transform of a function

F(-) (of bounded variation on compact sets) which assigns zero mass
above b <1 and below some a > -= .7 Little is known about the class
of utility functions admitting of this representation, and which we
will call Mellin functions, but it is clearly extensive.

There are essentially two ways to establish the turnpike results
for the Mellin class. We can verify the stability of the convergence
to the turnpike as we converge to integrals, or we can work directly
with (27) and this latter approach is the easiest. Analogeous to the
discrete form, the mass function, F(-) » cannot assign negative mass
in a neighborhood of its highest power b, if b >0 , and if b < 0 ,
it cannot assign positive mass in a neighborhood of b. Similarly, it
cannot assign negative mass in a neighborhood of the lowes+t power a,
if 2 > 0, nor positive mass if a < 0. Ve can now prove that any
policy sequence that fails to converge to of will be dominated exactly

as in the previcus theorems.
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The Fundamental Constant Turnpike Theorem for Mellin Utility Functions:

Let U(-) be a Mellin function representable as
b
- B
Ulw) = fa Wb ar,

where

-« < a < b < 1,

and define

(1) & if b >0 and Ap(ey ) > A (a))

(i1) the crossing point where Ab(a*) = Aa(a*)

if >0 and A (o) < A (g )
N = b 7b ’
o = 2@ (28)

(iii) otherwise the point where

A (a®) ¥ Ap(a®) < A o) v Ay (a)
It follows that a@ - a* uniformly on compact sets bounded from the origin.

Proof: The proof of the theorem is greatly simplified at little cost,
if we slightly strengthen the requirement on F(-)} so that dF assigns
positive mass in a neighborhood, [b - Ab, bl of b and negative mass

en la, a + A1 (A, or 4y  could be zerc). Since the modifications

a
of the proofs of Theorems 1, 2 and 3 are all very similar, we will only
do the first cass.

Suppose, then, that the case (1) conditions are sztisfied {see the
statement of Theorem 1) and assume, contrary to the theorem, that (2u4)
holds on 2 subsequence. Using the strict concavity of AB(a) (in a

neighborhood of b) and the continuity of AB(aB) in B8, (38> 0)



~ 26 -~

such that

E{U(wr)}

b 3 T T
fo W [agle)] a5,

| A
\"—'h
E
=
|
-
|
Oz
ja—
H
[a P
]

b-¢ T
B T
+ ja WP [A(a)] daF

Choose R'e [b - Ab,b] . [b « e, bl such that
Rt = ABr(agr) e (A% - §, A%] |
As in Theorem 1, we have
BUICMY b

lim sup —— 7 — 1i { f WS A% - 6J ' 4ar
m < m sup -

o’ (bt Yt L P B
b

A

(a+Aa)_ T

~ T
A, (a)
+ f w8 {Hﬁi——__i] dF
a B o B

_ T T
A _
+ L ¥ a alr [
(a+h ) Ri 8
a
A (aT) (a+h,) A
< 1lim sup atly J [ B B(a : dr
B a A (OLT) A
ath

a

| A
o
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where we have used the convergence theorem for Lebesgue-Stielties

integrals.
Now, consider the alternative pelicy, al = Ggr
E{U(w%_)}
T - b
——— = 877 WP ra e, )17 ar
[B®] a BB B

» T
b A (o, )
> [ B B8 ar
g B 8
b
> f WB dFB
B
> 0,

b ' - A b1,
v B' e ( b,,'l

The contradiction establishes pointwise convergence and uniform
convergence is done as in Theorem 1. Theorems 2 and 3 are similar

extensions.

Q.E.D.

Notice that, as before, the key to the proof technique is the use
of a dominating alternative path that lies close to the turnpike.

A further generalization can be obtained by considering appropriate
perturbations of the Mellin utility functions. Tor example, suppose

under the conditions cf Theorem 1, we consider

U(w) = aini + flw) (29)

L1 e ]

i=1
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where (3 m, kys k and K > 0) such that

Bn B

Mo W0l - mf ok < £ < m o e s ax (s0)

(Notice that we might as well assume that k< ay ) These constraints
. . . . B

on flw) Insure both that it will not "undc" the influence of wl or

an by simply cancelling them and that F(w) will not "overpower”

them on their respsctive asymptotically dominant domains.

We can now prove an extended version of Theorem 1.

Theorem 1%: Assume that U(w) is given by (29) and satisfies the

conditions of Theorem 1 and f(w) satisfies (30). It follows that

uniformly on compact sets bounded away from the origin.

Proof: The proof is nearly identical to that of Theorem 1. By (30),
if (19) is satisfied, then

B1

iA

E(F(i)} < Elmig b - (s + 1)+ K

| A

m b La% - 67 - (o #3A, (0DT 4
1l n

and (20) will sti11 be satisfied.

o

Similarly, along the o* turnpike we will still have

E{UGi,)}
lim sup - EA*]T > 0,
since Ar (o) T
B £(p) } N -
aIWBI + —-—-—-—--..-_TT i a]_WB}‘ + (—man) _"r_l""—" + (kl_ a]. )WBI[
[a*] A%
K

[A%]

A
A

o

E
K
W

*']

T
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0.E.D.

Extended versions of Theorems 2 and 3 can alsc be proved and, in
summary, it is possible to extend the fundamental thecrem. Since thsa
techniques are straightforward at this stage we will simply state the

appropriate conditions and the extended theorem without proof.

The Fundamental Constant Turnpike Theorem for Extended Mellin Utility

Punctions: Let U(-) be an extended Mellin utility function

Ulw) = jz WB dFB + £lw) (31)

where

and define the turnpike policy, o , in the three regimes as in (28).
Furthermore, in cases (i) and (ii), f(w) must satisfy (30), and in

case (iii), we require
- m (wBl + WBn) < fw) < - {a; * ky) wgl - {a, + k) an .

where ay and a; are now interpreted as the mass assigned by T at

g

at zero, if

a and b resgpectively, and where we may set kn or k,

F_ assigns mass of the same sign as at

i 9

of a or b respectively.

or b~ on deleted neighborhoods

Proof: See the proof of Theorem 1%,

Q.E.D.
The reader can easily verify, for example, that functions of the
form %{w + C)B, B > 0 , where ¢ is a constant, belong to the extended Mellin

family and therefore have turnpikes o_, (This last result was obtained by

B



Mossin [1968] for the general turnpike problem.) In Section V, we will
discuss the generality of these results.

We will conclude this section with a turnpike theorem for the
Bernoulli  logarithmic case. The special role assumed by the logar-
ithmic utility function has warranted that it be examined separately
(although it has a vepresentation in the topological closure of (31) ),
Intultively, if not mathematically, it can be treated as the power
Function with the lowest B > 0 and the largest B < 0. It is not
surprising, then, that the only new wrinkle it presents in the turnpike
theory is that it dominates suboptimal policies in an additive fashion
rather than multiplicatively. Define the additive growth factor in the
logarithmic case as

L{a) = E{log (r + a%)} ,
and assume its maximum is attained at a3

L = Lla) > L(a) .

Thecrem 4: If
Ulw) = logw + f(w) ,
where for some concave H(:) and some convex G(-)
flw) e (G(w), H(w)) , (32)
and for any a > 0
D

G(a
T , T > 0, {33)

then a;p  has the turnpike property.



Proof: Since the proof is similar to our previous ones we will only
cutline it. From (33), it follows that H(.) is increasing. To see
this note that by concavity, if H'(a) < 0 for some a , then we can

take a > 1, and

Ha)) | H(a) + B'(a)al - a]
T T

violating (33). Similarly, G6(.) must be a decreasing function,

Now, if ap does not have the turnpike property, then (24) holds

on a subseguence and on this subsequence (48 > 0) such that

E{U(ﬁT)}

= 1 [leg w + TL(O.’.T) + E{f(%_ )17
T T T

< L [log w + TL(a') + E{H(ﬁT)}]

T
< 7 flogw + TN 4 H(E{7,))]

1 T Hiw (r + aT§)T)
= = logw + L(a”) -

T T

T

< L log w + L(al) Ala )
— T T
> L(al)

< IL* _ §

H]



where
a = [r+x] vV [wr+x)].
On the alternative path where al = a we have
E{U(p)} log w 1 E{£()}
= L +
T T T
GIE{wr}]
> log W + L% + ____E‘_._ﬁ
o T T
T
, logw oI 4 Gla )
z T T
> L®

This result viclates optimality and, since uniform convergence is as in
the proof of Theorem 1, @; Dossesses the turnplke property.

0.E.D.

The bounds on f(w) are interesting in their own right because
they suggest a direction of generalization of our earlier results.
For large w(w>>1) , H(.) might be of the form %{log w)B , B<l and

[1og(aT) 1"

1 1 8
- = — (log 2T L g,
B T B T

By compounding the power Functions and the logarithm in this fashion,

further turnpike results might emerge.



Section IV

We have already remarked on the similarity between the turnpike
Tliterature of growth theory and the vesults developed above%O The
intent of this section is to draw attention to this analogy and to
illustrate it. Its full exploration, however, is really the subject
of another paper. For the sake of a concrete example consider a 2.
form terminal utility function,

Ba

UG = aptl o+ aub2 158, >8,50. (31)

2

1f we zllow only constant policies <015-..5 ap> , where a is

a predetermined constant (not functicnally dependent on w l) then
T-.

the portfolio turnpike problem is

max {E{U(ﬁT)}

Oy gene >
Oy ) O

8, T
+ a,w g ABZ(uT)E.

. . T
(As we have already seen, the solution to this problem sets o, = a,

for each 71 .)
To establish the analogy with growth turnpike theory we only have
to regard Efﬁ?l} and E{ﬁgz} as two different goods. The terminal

utility function tells us that they are priced at a; and d, Trespec-

tively, i.e., the terminal utility valuation is simply a linear price

valuation. If B, < 0 , then we might set some a, < 0 indicating that
i i

the associated power function is a "bad" vather than a "good. "



The technology of our problem can be described in a fashion quite
similar to that of an ordinary precduction set. At the beginning of a

period inputs <Xy, Xy” 80 into the production process where these

represent WBI and WBE respectively.ll

Output, <y1, V,> is then defined as the expected next period values

of the B.-power function, and admitting free disposal we have
i £

Ve

i _E_ Xl Asi(o‘,) Pl

where o 1is the particular portfolic policy chosen for the pericd.
The pelicy a 1Is the analogue of a variable that indexes the activity
set in ordinary production theory. Formally, we can define the production

technology set as

o
111

{<x, y> | (Ta )} (¥i) v, <% ABi(oc)} .

If a particular good is to be valued as a bad, then free disposal

will be turned around to allow

Ve 2 E; ABi(a)

In this sense, unlike ordinarv production theory, the valuation will

influence the definition of the production possibility set. To aveid



the tedium of obvious qualifications we will not consider this case.

Assume, then, that a,, B. > 0 .
i° 1

We can show that $ has many of the properties of an ordinary
production set. First, S exhibits constant returns to scale. Clearly,
if <x, yv> £ S, then (V) > 0) <Ax, Ay> £ S . Second, it satisfies
the no Land of Cockaigne assumption; if inputs x = 0 » then v =0 .
Third, the continuity of ABi(u) implies that S 1is closed. It should
also be noted that these last two properties assure that SX is bounded
for fixed x. The final critical neoclassical property is that of con-
vexity. NWNotice that since § admits of constant returns, 1t cannot be
strictly convex.

It is easily shown that the analegue of the classical production
possibility set,

S, = {y| <x, y» ¢ 8} ,

is convex. To see this let yl, v2 ¢ Sy, - Taking a convex combination

we have that (Vi)

y = Ay{ + (1—1)y%
1 i

| A

Axi Ai(al) +  (1-2) Xy Ai(az)

fl

Xy [AAi(al) + (1-2) Ai(uz)]

< x, A (),
- 7171

where o = lal + (1-2) a2 and we have made use of the concavity of

A.(.} . The convexity of SX » however, is only necessary and not



sufficient for S§ to be convex. In fact, we can show the rather sur-
prising result that in an appropriate projective space, the comp lament
of S wrather than $§ is convex!

We will illustrate this point with the 2-form. Since S admits
of constant returns to scale it is easiest to normalize and we will do

so by setting the input sum,

Figure 5 illustrates two ways to conceive of § under this restriction,
The set of possible outputs, YV, is defined as

Y = Us, ., (35)

where the union is taken over normalized input pairs. Thus, Y is
bounded by the outer envelope of the individual convex production
possibility sets. The union of convex sets, however, is not necessarily
(or usually in a category sense) convex and Y is ne exception. An

equivalent definition of Y is to take the union ovep policies and

from (35)
Y = Us
v X
= U {y[ <%, v> g S}
X
= U {y| (Ta)wi) v; S % Ay (a)}

1

H
W

U {y] wi) Vi 2% ABi(u)}

in

g AS_(Q)}] .

= ULU{yl (Vi) v,
o X 1
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The set in square brackets, though, is simply the set of feasible out-
puts for a fixed portfolio policy, o . As is shown in Figure 5, this
set is simply bounded by a line much like an ordinary budget or cost set.
Since Agl(a) and AB2(a) are monotone in different divections in the

relevant undominated range between Cg and aBI » the budget sets do
2

12
not deminate and the outer envelope will be concave rather than convex.

This considerably complicates matters if we wish to invoke
Radner's [19617 beautiful lemma and the resulting turnpike theorem
to verify that aT > a® where o ig the maximal steady state growth
rate, aBl » in the case considered above. (The arpument becomes more
difficult still with "bads'" because of the possible non-existence of
a turnpike in the usual sense due to lack of closupe as in the case
of Theorem 2,) There are, however, two further reasons why we chose
not to attack the problem through this analogy.

First, such an approach would not have made use of two special
features of our problem. On the one hand, we can adopt a constant policy
for each horizon and this simplifies our problem. In the economy-wide
problem, resources cannot be assumed to be costlessly shiftakle in each
period and we must drop the price taking assumption we have employed.
The analogue of our results would, thus, not use this preperty, since
it is lacking in ordinary turnpike theory. Second, and more impor-
tantly, our technology is completely decomposable and this feature
allows us to study the structure of +he problem in detail. The By-
good or sector in the zbove case grows more rapidly than any other and,

asymptotically, the other sectors become negligable. (Warning! Caution



must be used with notions of convergence in utility space, see Goldman
[19741.) This is a characteristic feature of a decomposable system and
we have exploited it in all of our earlier results.

The second reason for not relying too heavily on the analcgy is
that it does not generalize very easily. The techniques and results
of Sectien III are used extensively in a forthcoming paper, Ross [1973],
to analyze the general turnpike problem, but it is difficult +o extend
the traditional growth turnpike theory to the general portfolic +urn-

pike problem. In general, the optimal pelicy in period T , o , will
T

be Ffunctional on the random wealth level, ﬁr—l » inherited from the

previous period, i.e.,

The state variables which define the current positicn must there-
fore include the past realization of ﬁT*l » and, conversely, it would
be inadequate merely to store <Ag (a)> as we were able to do in the

i
above. As the horizon increases, though, the number of feasible terminal
wealth realizations will become infinite (even if W, 1s finitely dis-
crete) and the commodity space of our anazlogue must be infinite dimen-
sional. Radner's elegant development, however, breaks down in infinite
dimensional spaces.

To make all this explicit consider our concrete 2-form Function
(34). In the peneral T-period turnpike problem, there will be an
optimum initial portfolioc policy g for given w. This will lead to
a random return

W, = wlr + uox] .



The second period optimal policy will now depend on the realized

Wy value, and not simply on the ex ante Ag (%) and Ag (G} expected
1 2

outputs. If T=2 , then our final outputs will be

B. N . W B
w i E{(p + aox) I (r + ul(wl) Xl) i},

rather than

13
WB E{(r + doi)sl} {{r + uli)el}



Section V

There seem to be two broad avenues of generalization that are of
interest.luFiPSt, within the confines of the model as it is currently
stated, we would like a more complete understanding of the class of
terminal utility valuations that admit turnpike results. We have intro-
duced and examined one class, the extended Mellin family (ineluding
the log function), in some detail in this paper and in Ross [1973]
it is shown that an analogous Laplace class of the form

[e+]

Ia ean dPB ; a=> 0,

can be analyzed in a similar fashion. These two classes are quite
broad, but at present it is not known whether they are necessary as well
as sufficient for a turnpike theory. (A negative conjecture on this
issue is spelled out in Ross [19731.)

Second, as is shown in Ross [1973], the general turnpike problem
introduced earlier can be studied within the same framework as the cur-
rent paper. In particular, by drawing on the methods developed here,
we can show that in many of ocur cases the turnpikes for the constant
policies and the true optimal sequence are the same. The induced depen-
dence of the optimal policy on the past realized wealth level (see
Section I) does not prevent such an analysis. A much more serious
complication is introduced if the exogenously given rates of return are
permitted to be stochastically dependent. Nevertheless, we might hope
that ocur present findings will serve as a guide to the solution of turn-

pike problems with stochastic interdependence.



—.i'_l_l_

In general, the findings of this paper indicate that the study of
the dynamic properties of stochastic portfolio problems can be greatly
facilitated by an appropriate treatment of the valuation of uncertain
payoffs. By generalizing from the stationary cases which admit of
closed form analysis we have been able to depive solutions for a large
class of valuation criteria. Furthermore, the techniques employed have
stressed overtaking principles that promise to be rcbust across many

diffevent problems.



Footnotes

* L]
Associate Professor of Economics, University of Pennsylvania. This

work was supported by a grant from the Rodney L. White Center for Finan-
cial Research at the University of Pennsylvania and by National Science
Foundation Grant GS-35780. The author is grateful to Henvy Landau of
Bell Labs whose suggestion led to a considerable simplification of
Lemma 1.

lReferencingsﬁiectively but not exhaustively, Breiman [1961] and
Latane [1957] and more recently Hakansson [1971b7,Markowitsz [19727,
Samuelson [19717] and Samuelson and Merton [1972] have studied the properties
of the policy which maximize the expected log return, the so-calied
maximal growth criteria. Mossin (19681 and Hakansson [1971alhave locked
at stationary portfolio policies and Merton [19717 has analyzed the
optimal consumption withdrawal pelicy when returns are governed by Jif-
fusion processes,

20f course, this conjecture vests heavily on the assumption that
for very long periods the optimal initial policy for the T period Dro-
blem %y should be guite insensitive to the current wealth level.

A second class of functions fop which the solution +o (2 ) is
well known is the exponential or constant absolute pisk aversion func-
tions,

A
Ulw) = -e w .

¥hile the problem of this paper can be examined with such Functions, the
techniques are little different than the ocnes we employ and, as such, we
will not treat this case explicitly. A forthcoming paper, Ross [1973],
treats this case within the context of the general turnpike problem. See,
also, the discussion of Section V of the present paper.

LLThis is tantamount +o assuming that for any positive e, % can
attain a value less than e - » with positive probability.

5
We will emplovy the convenient notation

max {x, v}

n

xVy

and

HI

x Ay min {x, v} .

6 . . . .

Leland [29727 has dealt with +his class, but he imposed an additional
assumption whose effect on limiting the class of terminal utility funec-
tions is difficult +to assess,

7
See Widder [1901] for a detailed study of this transform. Unfor-

tunately, neither the truncated form nor the relationship between the
inversion problem and the class of concave functions appear to have been
well studied in the mathematical literature.



8
While conditions (30) are sufficient, they may not be necessary
since it is possible to find functions f£(w) such that, for example,

£{w)
B' = o as W - o

w1l ?
but

F{w)

> 0 as w * @

w81+6

for any § > 0 . Cne example is
B
fw) = wllogw .

9The additional generality of the perturbed form comes from the
fact that not all admissible perturbations will possess Mellin-Stieltijes
transforms. A slightly greater increase in generality can be had by
considering the class of utility functions for which (Ib) ¥ B > b)

Ulw)

s

> 0 (f1)

and (VR < b)

{w)
7= > o (£2)
W
as w > with gsimilar conditions as w =+ 0 . (Notice that (f1) and

(£2) are independent conditions and that (f1) does not imply (£2).)

These conditions and their relation to the general turnpike problem are
discussed in Ross [1973]. The proofs of the turnpike theorems for
utility functions satisfying (£ 1,2) are still straightforward extensions
of the arguments of the text with conditien (f1) guaranteeing that no
portfolio policy can asymptotically dominate the turmpike and (f£2)
assuring the asymptotic growth of the turmpike policy. These results
permit us to dirvectly treat utility functions of the form Liw + )8

where B < 0 , but despite the increased generality the constructive
approach of the text was considered of greater interest in the present
context,

rop an excellent bibliography on traditional growth theory the
reader is referrved to Burmeister and Dobell [1970].



1l an alternative specification of the fechnology is to adopt a
kinked production scheme which mope closelv mimics the inputs-as-
wealth analogy. Given imputs X1, X,> we would find the maximum
w subject to (Vi)

Wi < X,
1

Qutput is then defined as

B.
Vi < 0w 1 ABi(Ol) < ®3 ABi(OL) .

This approach has some appealing features and, in particular, the
production envelope Y (defined below) is now convex. The price of
this convexity, however, 1s to sacrifice censtant returns to scale. To
see this let w and <x> be such that

Now a change of scale, by x>0 , to Ax will require the existence of
W such that (Vi)

B B
aw b < W 1 < A=,
or {7 1)
~Bs
wlto= x|,
i

which cannot in general be satisfied.

Thus, the production set wilil not be shifted in scale by a scale
change in inputs. The analvsis new becomes significantly complicated
and it seemed preferable to pursue the analogy in the text.

2 . . . . .
1 The argument is reminiscent of the analysis of the factor price

frontier. See Burmeister and Dobell [1970].

131t is possible, though, to incorporate some limited probability

state dependence. TFor example, if there is a finite number of states
in each period, then r could be permitted to depend on any finite
number of realized past states or, equivalently, rates of return.

14It should be clear that nothing we have done so far depended
critically on the assumption of a single risky asset and the extension
To many risky assets can, generally speaking, be accomplished by simply
reinterpreting o to be a portfolio of risky assets and & to be a
vector of random returns premiums,
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