Risky Corporate Debt in a Market Model Context

bу

John R. Percival

Working Paper No. 10-73

RODNEY L. WHITE CENTER FOR FINANCIAL RESEARCH University of Pennsylvania The Wharton School Philadelphia, Pa. 19174

The contents of and opinions expressed in this paper are the sole responsibility of the author.

This study attempts to fit risky debt explicitly into capital market equilibrium theory in the context of the Sharpe-Lintner-Mossin (S-L-M) capital asset pricing model. In recent years there has been voluminous theoretical and empirical research developing and testing the capital asset pricing model. However, most of this literature either explicitly or implicitly assumes that the market for capital assets includes risky equity securities and risk-free debt. The simultaneous existence of risky equity, risky debt and a risk-free asset has not been examined in any detail.

The following equilibrium relationship can be derived for any risky asset, i , in the capital market:

(1)
$$E(R_i) = R_f + \frac{[E(R_m) - R_f]}{\sigma^2(R_m)}$$
 $Cov(R_i, R_m)$

portfolio.

where: $E(R_i)$ is the expected return on asset i R_f is the rate of return on the riskless asset $E(R_m)$ is the expected return on asset m $\sigma^2(R_m)$ is the variance of the return on the market portfolio $Cov(R_i,R_m)$ is the covariance of the return on asset i with the return on the market

From this equilibrium relationship, two basically equivalent measures of the nondiversifiable risk on asset i have been developed upon which the expected return, $E(R_i)$, is conditional. One such measure, $Cov(R_i,R_m)$, is obvious from equation (1). The other is the well-traveled beta coefficient, β_i in equation (2).

(2)
$$E(R_i) = R_f + \frac{Cov(R_i, R_m)}{\sigma^2(R_m)} [E(R_m) - R_f]$$

= $R_f + \beta_i [E(R_m) - R_f]$

Nondiversifiable Risk on Corporate Debt and Equity

Modigliani and Miller (M-M) have presented a theoretical framework for equilibrium in the combined equity and debt capital market. Some of the relationships between the M-M propositions and the S-L-M capital asset pricing model have been examined elsewhere. Hamada [3] found that the M-M propositions I and II (in both the no-tax and with-taxes versions) were valid when restated in the context of the capital asset pricing model with risk-free debt. Haugen and Pappas [4], [5] and Imai and Rubinstein [7], have examined the M-M propositions in the context of the capital asset pricing model with risky debt. The M-M model was again found to be valid but a number of interesting extensions of this analysis, given the consistency of the two models, have not been examined. Stiglitz [15] found that the M-M analysis holds

under conditions more general than those originally assumed by M-M. The conditions examined by Stiglitz include those consistent with the capital asset pricing model with risky debt.

Proposition II of M-M which develops the effect of increased leverage on the required return to equity, given a level of business risk to which the firm is subject, appears in equation (3).

(3)
$$k = \rho + (\rho - i) \lambda$$

where: k is the average required rate of return on equity ρ is the market capitalization rate for the firm's earnings stream or weighted average cost of capital.

i is the average required rate of return on debt

 λ is the firm's debt/equity ratio

In the absence of corporate taxes ρ and the value of the firm are constant for any capital structure. If i is also assumed to be unaffected by changing λ then a simple linear relationship exists between the required return on equity and λ .

However, it has been pointed out, reasonably enough, by Solomon [13] among others, that the firm could not expect to be able to substitute debt for equity indefinitely without an increase in the required rate of return to debtholders. The implications for an optimal capital structure of the required return on debt being a function of leverage have been examined

elsewhere. From this analysis it can be demonstrated that under unrestrictive conditions, within the M-M theoretical framework, the required rate of return on equity remains a non-decreasing function of increasing leverage and the market capitalization rate remains unaffected by a change in capital structure.

The rationale behind the required return on debt increasing with increased leverage can be illustrated most clearly by imagining a probability distribution of the firm's period-by-period earnings. This distribution determines the cumulative probability of the firm's earnings being less than any amount in a given period. For small amounts of leverage, determining inconsequential levels of fixed charges, it is possible that the cumulative probability that the earnings are insufficient to meet the fixed charges is equal to zero. In this case, there is no default risk and in the absence of interest rate risk, the rate of return to debtholders is known with certainty and is equal to the promised yield on debt. However, after a point, with increasing leverage and increasing fixed charges the probability of a default increases. Under the assumption of risk aversion by debtholders, this situation would lead to an increasing required rate of return on debt for increasing leverage. increase would continue until all equity had been replaced by debt. At that point, the firm's debtholders would be in the same situation as the equityholders in a 100% equity

elsewhere. From this analysis it can be demonstrated that under unrestrictive conditions, within the M-M theoretical framework, the required rate of return on equity remains a non-decreasing function of increasing leverage and the market capitalization rate remains unaffected by a change in capital structure.

The rationale behind the required return on debt increasing with increased leverage can be illustrated most clearly by imagining a probability distribution of the firm's period-by-period earnings. This distribution determines the cumulative probability of the firm's earnings being less than any amount in a given period. For small amounts of leverage, determining inconsequential levels of fixed charges, it is possible that the cumulative probability that the earnings are insufficient to meet the fixed charges is equal In this case, there is no default risk and in the absence of interest rate risk, the rate of return to debtholders is known with certainty and is equal to the promised yield on debt. However, after a point, with increasing leverage and increasing fixed charges the probability of a default increases. Under the assumption of risk aversion by debtholders, this situation would lead to an increasing required rate of return on debt for increasing leverage. This increase would continue until all equity had been replaced by debt. At that point, the firm's debtholders would be in the same situation as the equityholders in a 100% equity

financed firm. That is, the debtholders would be in a position of having to bear all of the risk inherent in the firm's unlevered earnings stream.

If we designate the expected rate of return on a chosen firm's equity as $E(R_e)$ and the expected return on its debt as $E(R_d)$, we can rewrite equation (1) as:

(4a)
$$E(R_e) = R_f + \frac{[E(R_m) - R_f]}{\sigma^2(R_m)}$$
 $Cov(R_e, R_m)$

$$= R_f + \beta_e[E(R_m) - R_f]$$

and:

(4b)
$$E(R_d) = R_f + \frac{[E(R_m) - R_f]}{\sigma^2(R_m)} Cov(R_d, R_m)$$

$$= R_f + \beta_d[E(R_m) - R_f]$$

Given the consistency of the M-M and S-L-M models a simultaneous consideration of equations (3), (4a) and (4b) should lead to some insights concerning the theoretical relationships between the nondiversiable risks of equity and debt instrum nts and the determinants of nondiversifiable risk to debtholders.

For k and therefore (R_e) to be minimized for a given level of variability in the firm's earnings at a capital structure of 100 percent equity, $Cov(R_e,R_m)$ and therefore β_e

must also be a minimum at that point. From that point, substituting debt for equity causes the well known "leverage effect" on the variability of return to stockholders. That is, adding leverage causes the $\sigma(R_e)$ in equation (5) to increase without, under unrestrictive assumptions, any concomitant change in $Corr(R_e,R_m)$.

(5)
$$Cov(R_e, R_m) = Corr(R_e, R_m) \sigma(R_e) \sigma(R_m)$$

When the required return on debt is assumed constant with respect to leverage, both $Cov(R_e,R_m)$ and β_e are linear functions of λ , the debt/equity ratio. However, when we assume that increased leverage implies increased cumulative probability of default, $Cov(R_d,R_m)$, β_d and the required return on debt increase with leverage. Thus we can let the cost of debt be a function of the firm's debt/equity ratio, $f(\lambda)$. M-M proposition II then requires that:

(6)
$$k = \rho + (\rho - f(\lambda))\lambda$$

It has been pointed out several times (e.g. see Stapelton [14], chapter 2) that risk aversion and the preferred risk position of debtholders over equityholders is sufficient to keep the sign of the first partial derivative of (6) with respect to λ , $\frac{\alpha_k}{\alpha_\lambda}$, non-negative at all points.

(7)
$$\frac{\partial \mathbf{k}}{\partial \lambda} = \rho - \lambda \frac{\partial \mathbf{f}(\lambda)}{\partial \lambda} - \mathbf{f}(\lambda)$$

That is, if we assume that $f(\lambda)$ is assymptotic to ρ , the cost of equity when $\lambda=0$, the last two terms on the right of equation (7) cannot exceed ρ .

It can be further shown that if $f(\lambda)$ is assymptotic to ρ , then the second partial of (6) is negative. That is, in equation (8), the first term, which has a positive sign, must be smaller than the absolute value of the second term.

(8)
$$\frac{\partial^2 k}{\partial \lambda^2} = -\lambda \frac{\partial^2 f(\lambda)}{\partial^2 \lambda} - 2 \frac{\partial f(\lambda)}{\partial \lambda}$$

Thus, the linear relationship between the required return on equity and the debt/equity ratio has been lost.

Given the linear relationship bewteen the required return on equity and the risk measure in (4a) and (4b), it must be the case that the covariances and beta coefficients must exhibit analogous assymptotic relationships when expressed in terms of the debt/equity ratio.

The foregoing analysis suffers from its having ignored an important element of the risk inherent in an investment in a bond. Traditionally, analysis of bond market risk-return relationships have dealt with both default risk and interest rate risk. This segmentation of total risk into cash flow variability and capitalization rate variability factors

corresponds to the recent introduction of two-factor market models for equity securities. The models segment total nondiversifiable risk into a non-diversifiable cash flow risk factor and a non-diversifiable capitalization rate risk factor. Some empirical work utilizing two factor models has been done including attempts at isolating the firm characteristics which are determinants of these factors.

Roll [12] has examined interest rate risk in a market model context for default risk free securities. He used a capital asset pricing framework combined with a dynamic, efficient-markets theory of spot and forward rates to estimate a "market horizon" for investors in Treasury Bills. He noted that if the term to maturity of a Treasury Bill matches the investment horizon of the investor, he is not concerned about movements in prices and interest rates. Then, expressing the "liquidity premium" that the market appears to be requiring on securities which do not match this investment horizon in terms of the CAPM risk measure, he iteratively examined the strength of the association between the liquidity premiums and beta coefficients from Treasury Bill data produced by different market horizons.

Corporate Bond Beta Coefficients

There are a number of empirical problems which present

themselves when one attempts to estimate beta coefficients on corporate bonds. Probably the most important problem concerns the yield data. In order to accumulate a meaningful sample of bonds it is necessary to include securities which are traded very infrequently. In the absence of actual market prices, it is necessary to resort to bid and ask quotations. There appear to be bonds in which there is very little interest on the part of investors on which even the bid and ask quotations change very infrequently. Because of these effects it is necessary to choose wide time intervals in order to detect any meaningful movement in prices and yields. This is a very important shortcoming of the empirical results presented here but one that is avoidable only by introducing other biases.

trial, utility and railroad bonds listed in the Standard and Poor's Bond Guide. All of the bonds which satisfied the following criteria were included: (1) the bond was on the market for the entire 1953-1967 time period, 1 (2) Standard and Poors did not change its default risk classification during this period, (3) the bond was not convertible, (4) it was not a serial issue, (5) the bond was rated BBB or better by Standard and Poors, (6) no bond of the same rating of that firm had already been included. The 175 bonds which met these criteria are listed in Appendix A.

In all empirical work involving the CAPM, two common measurement problems arise. One involves arriving at the empirical equivalent of the market portfolio and the other involves how to measure the risk-free rate. This study copes with the second problem by assuming that the investor in long term corporates, consistent with Roll's analysis [12], has some indeterminate long-term investment horizon over which the risk-free rate should be measured. Empirically, the closest thing to such a rate is the rate promised on insured savings deposits. This rate as published periodically in the Federal Reserve Bulletin was used in this study.

The first problem mentioned above was handled first by using the Standard and Poors composite 500 stock index which is consistent with the way the market portfolio has been empirically defined in previous studies.

Annual holding-period yields were calculated for each of the 175 bonds using the 1953-1967 year-ending prices and the coupon rates as published by Standard and Poors. Then rewriting the equilibrium relationship in equation (2) as:

(9)
$$E(R_i) - R_f = \beta_i [E(R_m) - R_f]$$

and expressing its empirical analog as:

(10)
$$Y_{it} = \alpha_i + \beta_{1i}X_{1t} + e_{it}$$

where: Y_{it} is the difference between the return on the i^{th} bond and the risk-free return in period t

It is the difference between the return on the market portfolio and the risk-free return in period t

the beta coefficients were regression estimated. These coefficients appear in Appendix B and are labeled as β_1 's. They are mixed in sign (137 positive and 38 negative) and range from -.126 to .406. However, only 25 of the 175 β_1 's are significantly different from zero at the 95 percent confidence level.

These β_1 's were then used to try to explain realized returns for the 175 bonds. For this purpose it would be ideal to be able to estimate the beta coefficients using one time span and use them to try to explain returns realized over a subsequent interval. However, because of the problems involving the data that were mentioned above, it was necessary to use the full time span over which the data was available in order to estimate the β_1 's. Lengthening the time span would have involved decreasing the sample size and including the time period of post-war administered interest rates.

Therefore, realized returns, defined to be the geometric mean holding-period yields, were calculated for the 175 bonds. Then, a regression of the form given in equation (11) was run.

$$(11) \quad R_{i} = a_{i} + b_{i}\beta_{1i} + e_{i}$$

R is the geometric mean return on bond i during 1953-1967

where: Y is the difference between the return on the i bond and the risk-free return in period t

X_{lt} is the difference between the return on
the market portfolio and the risk-free
return in period t

the beta coefficients were regression estimated. These coefficients appear in Appendix B and are labeled as β_1 's. They are mixed in sign (137 positive and 38 negative) and range from -.126 to .406. However, only 25 of the 175 β_1 's are significantly different from zero at the 95 percent confidence level.

These β_1 's were then used to try to explain realized returns for the 175 bonds. For this purpose it would be ideal to be able to estimate the beta coefficients using one time span and use them to try to explain returns realized over a subsequent interval. However, because of the problems involving the data that were mentioned above, it was necessary to use the full time span over which the data was available in order to estimate the β_1 's. Lengthening the time span would have involved decreasing the sample size and including the time period of post-war administered interest rates.

Therefore, realized returns, defined to be the geometric mean holding-period yields, were calculated for the 175 bonds. Then, a regression of the form given in equation (11) was run.

(11) $R_i = a_i + b_i \beta_{1i} + e_i$

R. is the geometric mean return on bond i during

 $\beta_{\mbox{li}}$ is the regression estimated $\beta_{\mbox{l}}$ for bond i The results of this test appear in Table I.

Table I

In addition to the problems associated with the lack of statistical significance of the majority of the $oldsymbol{eta}_1$'s, there is a further shortcoming in their use as risk measures. Since the index that was used in estimating the $oldsymbol{eta}_1$'s is an infinite maturity index (using common stocks) and the bonds themselves are of finite and decreasing maturity over time, the estimated β_1 's could not be expected to be stationary over time. It is an attribute of the mathematics of bond yields-to-maturity, demonstrated by Malkiel [8], that a given change in yield-to-maturity will have a greater effect on the price of a bond the greater in the term-to-maturity of the bond. One might expect then that if yields-to-maturity on long and short maturity bonds change by the same amounts, long-term bonds would have more variable holding-period yields than short-term bonds. The evidence from Culbertson [2] and others indicates that short-term yields-to-maturity tend to be more variable than long term yields but that even so, holding-period yields on long-term maturity bonds are more variable than those on short-term bonds.

In order to minimize the problems arising from a lack

of stationarity in the beta coefficients a market portfolio with changes in maturity parallel to maturity changes in the individual bonds was chosen. A single portfolio comprising all 175 of the corporate bonds equally weighted was constituted as this representation of the market portfolio.

 eta_2 's for the 175 bonds were regression-estimated according to equation (12) in a fashion analogous to that for the eta_1 's above.

(12)
$$Y_{it} = \alpha_i + \beta_{2i} X_{2t} + e_{it}$$

where: X_{2t} is the realized market premium in period t based on the 175 bond market portfolio

The estimated β_2 's were all positive and ranged from .137 to 1.968. A complete list of the β_2 's appears in Appendix B. One hundred fifty five of these β_2 's were significantly different from zero at the 95 percent confidence level.

The β_2 's were used in an attempt to explain the mean returns on the 175 bonds over the 1953-1967 time period in a manner analogous to the procedure used for the β_1 's and depicted in equation (11) above. The results of this test appear in Table II.

Table II

*significant at the 95 percent confidence level

The negative sign on the regression coefficient should be noted. This negative sign will be discussed as an interestrate risk phenomenon below.

In order to test for a lack of stationarity in the β_2 's, they were regression estimated again for the 175 bonds using two sub-periods of seven years each, 1953-1959 and 1960-1966. The β_2 for the second period was then compared with that for the first period for each bond. There did not seem to be any marked tendency for the β_2 's to decrease from the first sub-period to the second. Of the 175 bonds, 91 had β_2 's which decreased, while 84 increased. The corelation between the β_2 's for the two sub-periods was .27. In addition, it was found that the second period β_2 was within one standard error of the first sub-period β_2 for 54 percent of the bonds, and within two standard errors for 77 percent of the bonds.

An empirical problem involving the use of the 175 bond market portfolio and in fact involving the selection procedure for the 175 bonds can be seen by first rewriting equation (12) as:

(13)
$$\frac{P_{it} + 1 - P_{it} + C_{i}}{P_{it}} = \alpha_{i} + \beta_{2i} \left[\frac{P_{Mt} + 1 - P_{Mt} + C_{Mt}}{P_{Mt}}\right] + e_{it}$$

where: p is the market price of bond i at point in time t

P is the market value of the 175 bond market portfolio at point in time t

 ${f C}_{f i}$ is the annual interest paid on bond i ${f C}_{f M}$ is the annual interest paid on the 175 bond market portfolio

that default risk is actually not taken into account in the beta coefficient of equation (13). The selection criteria utilized for the 175 bond sample systematically eliminated bonds which defaulted during the 1953-1967 time period. Thus, in the context of two factor market models, only one factor (the capitalization rate or interest rate factor) is reflected in equation (13). In order for the regression estimated beta coefficient to reflect default risk, possible cash flow variability would have to represented in (13).

If the β_2 's measure only interest rate risk, a possible explanation for the negative sign on the regression coefficient in Table II is provided. 1953-1967 was a period of generally falling bond prices and generally rising interest rates. One might expect those bonds with the highest β_2 's to have suffered the greatest price depreciation and thus to have realized the lowest average holding-period yields during this period of time.

During a period of rising bond prices and falling interest rates, one might expect there to be a positive ex-post relationship between realized holding-period yields and β_2 's.

Therefore, a sub-period during which interest rates were generally falling, 1960-63, was chosen and the geometric mean holding-period yields for the 175 bonds during this sub-period were computed. A regression of the form given in equation (11) was then run and the results appear in Table III.

Table III

*significant at the 95 percent confidence level

The regression coefficient is now positive and significant. This result is consistent with the explanation of the negative risk-return relationship in Table II having resulted from the upward secular trend in interest rates during the period 1953-1967.

In order to incorporate cash flow variability risk into the analysis of bond risk-return relationships, the Standard and Poors default risk ratings of the 175 bonds were noted. Confidence in such ratings as indicators of default risk can be based upon Hickman's [6] results on the accuracy of such ratings in predicting default rates. In addition, Pogue and Soldofsky [10] have isolated firm traits that can be used to explain such ratings and these traits are consistent with the analysis of default risk presented previously in this paper.

Furthermore, Hickman's study and that of Atkinson [1] dealing with default experience indicate that the timing and degree of default are closely related to swings in the business cycle. This would tend to indicate that such risk is largely nondiversifiable.

The default risk classifications and β_2 's were combined in a multiple regression model which attempts to explain the realized 1953-1967 holding-period yields for the 175 corporate bonds. In order to include default risk in this model, two sets of dummy variables were used. One set was the Standard and Poor's rating with BBB as the excluded class. On the assumption that default ratings may not be constant across industries, a second set, specifying the industry of the issuer (railroad, utility or industrial) with industrial as the excluded class, was used. The results of testing this model appear in Table IV.

Table IV

Variable	Reg. Coeff.	t-value	Partial Corr.
	00983*	-7. 23260	48609
β ₂ RR	.00287	1.90368	.14486
Utility	.00027	.21610	.02659
AAA	01299*	-7. 81376	51508
AA	00898*	-6.12497	42613
A	00484*	-3.50251	26903
2			

 $[\]bar{R}^2 = .4680$, Intercept = .03720

^{*}significant at 95 percent confidence level

If the β_2 's estimated above are measures of interest rate risk, then the mathematics of interest rates suggests that they should be negatively related to coupon rates and positively related to term-to-maturity. In addition, the literature on two factor market models suggests that the factors should be independent of each other. In order to test for these relationships a multiple regression model with the estimated β_2 's as values of the dependent variable was set up. The independent variables included the industry and default rating dummy variables described above. In addition, the coupon rate and a maturity measure were used as independent variables. The maturity variable was defined to be equal to the number of years-to-maturity of the bond as of January 1953.

The results of this test appear in Table V. It appears that when both are considered together, the primary determinate of a bond's β_2 's involve attributes of the bond rather than the issuer.

Table V

Variable	Reg. Coeff.	t-value_	Partial Corr.
RR	.15615*	2.02466	.15476
Utility	.05014	.85818	.06844
AAA	17812	-1.92164	14706
AA	11759	-1.42777	10980
A	。02467	.33048	.02475
Coupon	27153*	-4.69422	34138
Maturity	.02793*	7.41529	. 49765
	$\overline{R}^2 = .3345,$	Intercept =	1.19605

^{*}significant at 95 percent confidence level

In addition to the factors listed in Table V, three additional attributes of the issue were tested as determinants of the β_2 's. Marketability was measured in three different ways and each was added to the multiple regression depicted in Table V. The three marketability measures were the total funded debt of the issuing company as of January 1954, measured in millions of dollars (book value), the size of the particular bond issue measured in millions of dollars (book value), and a dummy variable used to indicate whether or not the issue was listed on either of the two major exchanges (New York or American). The coefficients on the three measures were all insignificant when entered separately. In addition, a variable used to reflect sinking fund provisions was used. This variable is a dummy variable equal to one if the bond had a sinking fund provision and equal to zero if it did not. The coefficient on this variable was not significant. Finally, a dummy variable equal to one if the bond was callable, and equal to zero if it was not, was employed. This variable was found to be significantly positively related to the β_2 's given the other independent variables. implies that bonds which are callable demonstrate more price volatility when market interest rates change than noncallable bonds do.

The foregoing analysis has attempted to place risky

corporate debt explicitly in the theoretical and empirical framework of the capital asset pricing model. The empirical evidence suggest that bond beta coefficients which are regression estimated on a bond portfolio are useful measures of interest rate risk. However, such beta coefficients must be combined in the context of the two factor market models with a nondiversifiable-default-risk measure in order to more fully explain realized returns in the bond market.

APPENDIX A

No.	Company	Rating	Coupon	Maturity
1	Shell Union Oil Corp.	AAA	2.500	1971
2	Socony Vacuum Oil Co.	AAA	2.500	1976
3	Standard Oil Co. (N.J.)	AAA	2.375	1971 1970
4 5	Bethlehem Steel Borden	AA AA	2.750 2.875	1981
3 4 5 6	Inland Steel	AA	3.200	1982
7	May Department Stores	AA	2.625	1972
8	National Steel Corp.	AA	3.125	1982
9 10	Ralston Purina Co. Union Oil of Cal.	AA AA	3.125 2.750	1977 1970
11	Westinghouse Elec. Corp.	AA	2.625	1971
12	Aluminum Company of Canada	Α	3.875	1970
13	Anheuser-Busch, Inc.	A	3.375	1977
- 14	Burroughs Adding Machine Cities Service Co.	A A	3.375 3.000	19 7 7 19 7 7
15 16	Continental Can	Ä	3.250	1976
17	Household Finance Corp.	Α	2.750	1970
18	Lorillard Co.	A	3.000	1976
19 20	Macy & Co. Pillsbury Mills	A A	2.875 3.125	1972 1972
20 21	Thompson Products	A	3.250	1971
22	United Biscuit	Α	3.375	1977
23	U. S. Rubber Co.	A	2.625	1976
24 25	West Va. Pulp and Paper Glenmore Distilleries	A BBB	3.250 4.000	19 71 1972
26	Sylvania Elec. Prods.	BBB	3.750	1971
27	Boston Edison Co.	AAA	2.750	1970
28	Cincinnati Gas & Elec.	AAA	2.750	1975
29 30	Cleveland Elec. Illum. Co. Commonwealth Edison	AAA AAA	3.000 3.000	1970 1977
31	Con. Gas El. Lt. & Pwr.	AAA	2.875	1976
32	Consumers Power Co.	AAA	2.875	1975
33	Duke Power Co.	AAA	2.875 2.750	1979 1977
34 35	Duquesne Light Co. Ill. Bell Tele. Co.	AAA AAA	3.000	1978
36	K.C. Pwr. & Light	AAA	2.750	1976
37	Louisville Gas & Elec.	AAA	2.750	1979
38	Mich. Bell Tel.	AAA AAA	3.500 3.125	1988 1988
39 40	N. J. Bell Tel. N. Y. Tel. Co.	AAA	3.125	1978
41	Northwestern Bell Tel.	AAA	2.750	1984
42	Phila. Elec. Co.	AAA	2.750	1971
43 44	Southern Bell Tel. & Tel. Southwestern Bell Tel.	AAA AAA	3.000 2.750	1979 1985
45	Atlantic City Elec.	AAA	2.875	1980

Appendix A (continued)

No.	Company	Rating	Coupon	Maturity
46	Brockton Edison Co.	AΑ	3.000	1978
47	Buffalo Niagara Elec.	AA	2.750	1975
48	Cambridge Elec. Light	AA	2.875	1974
49	Central N.Y. Pwr.	AA	3.000	1974
50	Commonwealth Edison	AA	3.000	1999
51	Consol. Nat. Gas	AA	3.250	1976
52	Dayton Power and Light	AA	2.750	1976
53	Detroit Edison Co.	AA	3.000	1970
54	El Paso Elec. Co.	AA	2.750	1976
55	Gulf States Utils.	AA	2.625	1976
56	Ill. Power Co.	AA	2.875	1976
57	Ind. & Mich. Elec.	AΑ	3.000	1978
58	Iowa-Ill. Gas & Elec.	AA	2.750	1977
59	Iowa Pwr. & Light Co.	AA	3.250	1973
60	Madison Gas & Elec.	AA	2.500	1976
61	National Fuel Gas Co.	AA	3.000	1973
62	New Bedford Gas & Edison Lt.	AA	3.000	1973
63	New England Pwr. Co.	AA	3.000	1978
64	N.Y. Pwr. & Lt. Corp.	AA	2.750	1975
65	Niagara Mohawk Pwr.	AA	2.750	1980
66	No. States Pwr. Co.	AA	2.750	1974
67	Ohio Edison Co.	AA	3.000	1974
68	Ohio Pwr. Co.	AA	3.000	1971
69	Pac. Gas & Elec.	AA	3.000	1977
70	Penn. Pwr. Co.	AA	2.875	1975
71	Pennsylvania Wtr. & Pwr.	AA	3.250	1970
72		AA	2.625	1975
73	Public Svce. of Colo.	AA	3.125	1978
74	Pub. Svce. Co. of Ind.	AA	3.125	1977
75	Pub. Svce. Co. of Okla.		2.750	1975
76		. AA	3.375	1970
77	Svce. Pipe Line Co.	AA	3.200	1982 1976
78		AA	2.875	1970
79		AA	3.375	1975
80		AA	2.750 3.000	1974
81	West Penn. Pwr. Co.	AA	3.500	1972
82		A		1977
83		A	3.375 3.125	1974
84		A A	3.125	1977
85		A	3.000	1974
86		A A	3.000	1976
87		A A	3.250	1975
88		A A	2.875	1981
89 90	Central Ind. Gas	A	2.875	1971
70	OCILULAL TIME VAD	- · ·		

Appendix A (continued)

NT -	Company	Rating	Coupon	Maturity
No.	Company			
91	Central Maine Power Co.	A	3.500	1970 1975
92	Cent. Vermont Pub. Svce.	A A	2.750 3.375	1977
93	Columbia Gas System	A	3.250	1973
94	Equitable Gas Co. Georgia Pwr. Co.	Ā	3.375	1978
95 96	Gulf States Utilities	A	3.000	1969
97	Idaho Pwr. Co.	A	3.250	1981
98	Jamaica Water Supply	A	2.875	1975
99	Jersey Central Pwr. & Light	Α	2.875	1976
100	Ky. Util.	A	3.000	1977
101	Ky. & W. Va. Pwr.	A	3.000	1979 19 7 5
102	Lake Superior Dist. Pwr.	A A	3.000 3.125	1978
103	La. Pwr. and Lt.	A	3.500	1976
104	Mich. Consol. Gas Co. Minn. Pwr. & Light	A	3.125	1975
105 106	Miss. Pwr. Co.	Ā	3.125	1971
107	Miss. Pwr. & Light	A	2.875	1977
108	Mo. Pwr. & Light	Α	2.750	1976
109	Mountain Fuel Supply	Α	3.500	1971
110	New Orleans Pub. Svce.	A	3.125	1974
111	Panhandle East Pipe Line	A	3.250	1973 1976
112	Penn. Elec. Co.	A	2.750 2.875	1975
113	Penn. Tel. Corp.	A A	2.750	1970
114 115	Plantation Pipe Line Potomac Edison Co.	A.	3.000	1974
116	Rochester Tel. Corp.	Ā	2.500	1981
117	Rockland Light & Pwr.	A	3.125	1978
118	Safe Harbor Water Pwr.	Α	3.000	1981
119	Saguenay Pwr. Co. Ltd.	Α	3.000	1971
120	St. Joseph Lt. & Pwr.	A	2.625	1976
121		A	2.875	1976 1976
122	So. Counties Gas Co.	A A	3.000 2.875	1970
123 124	So. Nat. Gas United Gas Corp.	A	2.750	1970
	Utah Pwr. & Light	A	2.750	1976
126	Wash. Gas Light	A	3.500	1976
127		Α	3.125	1973
128		Α	3.000	1975
129		Α	3.000	1978
130	Equitable Gas Co.	BBB	3.375	1970
131	Milwaukee Gas Light Co.	BBB	3.125 3.250	1975 1977
132	New Eng. Elec. System	BBB BBB		1971
133 134		BBB	3.125	1975
135			4.000	ī990
ررـ	145, 5,00, 00 014, 1106,		-	

Appendix A (continued)

No.	Company	Rating	Coupon	Maturity
136	United Gas Corp.	BBB	4.375	1972
	Upper Peninsula Power	BBB	3.250	1977
138	West Penn. Elec.	BBB	3.500	1974
139	Atchison, Topeka & S.F. Ry.	AAA		1995
140	Atlanta, Knoxville & N. Ry.	AAA		2002
141	K.C. Terminal Ry.	AAA	2.750	1974
		AAA	2.500	1991
142	Union Pac. RR	AA	3.250	1982
143	Det. & Tol. Shore Line	AA	3.250	1970
144	Elgin, Joliet & Eastern Ry.	AA	4.000	1987
	Ky. Cent. Ry.	AA	3.125	1971
146	St. Paul Union Depot	AA	3.000	1995
147	Virginian Ry.	AA	2.750	1974
148	Wheeling & Lake Erie		2.875	1970
	Chicago, Burlington & Quincy	A	4.375	1982
150	Chi. & West. Ind. RR	· A	3.125	1976
151	Connecting Ry. & Co.	A A	2.750	1976
152	Det., Tol. & Ironton RR	A A	4.500	1976
153	Great Northern Ry. Co.		3.250	1980
154	N.Y., Chi. & St. L. RR	A A	2.875	1975
155		A A	4.500	1977
156	Northern Cent. Ry.	A A	3.125	1975
157	Peoria & Pekin Union Ry.		4.500	1977
	Phila., Balt. & Wash. RR	A A	2.875	1986
159		A	3.250	1970
160	Texas & N.O. RR	A A	3.275	1974
161	Texas PacMo. Pac. Trm. RR		3.125	1981
162	Western Pac. RR	A	-	1974
	Akron Union Pass. Depot	BBB	5.000	1974
164	Ala. & Vicksburg	BBB	4.250	1972
165	Atlantic Coast Line RR	BBB		1982
166	Fort Worth & Denver Ry.	BBB	4.375	1990
167		BBB		1980
168	Kansas, Okla. & Gulf Ry.	BBB	3.625	1997
169	Lake Shore & Mich. So. Ry.	BBB	3.500	1986
170	N.J. Junct. RR	BBB	4.000	•
171	Northern Pac. Ry.	BBB	4.000	1997
	Pennsylvania RR Co.	BBB		
	Pitts., Cin., Chi. & St. L. RR	BBB	3.375	1975
174	St. Louis-San Francisco	BBB		1997
175	Seaboard Air Line RR	BBB	3.875	1977

Appendix B

No.	$\boldsymbol{\beta}_{1}$	β_2
12345678901234567890123456789012345678901234567890123456789012345	03656 01524 030224 03043 .005287 01643 .007538 .0424343 .0075382 04343 04343 04343 04343 052825 015726 .0528405 .0528405 0528405 0528405 0528405 0528405 0528405 0528405 054766 .0547666 .054766	.70302 .94877 .82416 .61363 .98979 .861471 .609483 .77488 .774889 1.024783 .798914 .3192216 .6094819 .702281 .702281 .8319481 .702281 .806441 1.037304 .806754 1.045707 .777566 .777566 .777566 .777566 .77759 .7775

Appendix B (continued)

No.	β ₁	β ₂
47890123456789012345678901234567890 6777777777788888888888890	0393 03962 .06489 05168 052567 023614 023614 023614 023614 023614 0246516 .025659 .024415 .045951 .055951 .0559	.91551 1.00933 .68963 .93787 1.73817 .90142 1.03547 .901547 .86848 .906688 1.076688 1.076688 1.07668 1.33078 1.33078 1.38731 1.98731 1.100131 1.100131 1.100131 1.10131884

Appendix B (continued)

No.	$^{eta}_{1}$	β_2
91 92 93 94 96 97 99 101 103 104 105 107 108 109 111 113 114 115 117 118 119 121 121 121 121 121 121 121 121 121	.04972 .042250 .09775 .05200 .097759 .036305 .027801 .03197 .03197 .08197 .08197 .081939 .09374672 .081939 .112572 .084631 .12572 .0847638 .0778375 .0847638 .0778375 .0847638 .0778375 .0847638 .0778375 .0847638 .0778375 .0847638 .0778375 .0847638 .0778375 .0847638 .0778375 .0847638	.79650 1.17808 1.179650 1.17808 1.179650 1.17808 1.190934 1.491934 1.491934 1.593468 1.6489468 1.64892368 1.64892368 1.64892368 1.64892368 1.64892368 1.64892369 1.6583356 1.6683356 1.6683356 1.6683356 1.6683356 1.6683691 1.6686891 1.6686891 1.6686891 1.6686891 1.6686891 1.6686891 1.6686891 1.668

Appendix B (continued)

No.	$^{\beta}{}_{1}___$	β ₂
136 1378 1390 1412 14456 1490 1412 14456 1490 1412 1455 15578 16666 1677 1678 1771 1711 1711 1711 1	.01397 .19113 .02309 00175 .27008 .03509 021962 .03394 .106845 .04538 .16509 .04845 .103382 .103382 .10468 .12065 .12065 .12065 .12065 .12069 .13166 .03382 .15477 .12089 .14974 .2089 .14974 .2089 .14974 .2089 .21672 .21672	.45065 1.16007 .875188 1.09916 1.21547 .65642 1.23675 1.4861290 1.3108

FOOTNOTES

*Assistant Professor of Finance, University of Pennsylvania. The author wishes to thank the Rodney L. White Center for Financial Research for financial support.

Of course, modifications of the M-M theoretical framework lead to the possible existence of optimal capital structures. In particular, the possibility of bankruptcy may result in an optimal debt level for the firm (see Stiglitz [16]).

 2 This introduces a bias since bonds which fall into default are systematically eliminated from the sample.

References

- T.R. Atkinson, <u>Trends in Corporate Bond Quality</u> (New York: National Bureau of Economic Research, 1967).
- J.M. Culbertson, "The Term Structure of Interest Rates," Quarterly Journal of Economics (November 1957),485-517.
- Robert S. Hamada, "Portfolio Analysis, Market Equilibrium and Corporation Finance," <u>Journal of Finance</u> (March 1969), 13-31.
- 4. Robert A. Haugen and James L. Pappas, "Equilibrium in the Pricing of Capital Assets, Risk-Bearing Debt Instruments and the Question of Optional Capital Structure," <u>Journal of Financial and Quantitative Analysis</u> (June 1971),943-953.
- 5. Robert A. Haugen and James L. Pappas, "Reply," <u>Journal of Financial and Quantitative Analysis</u> (September 1972), 2005-2007.
- 6. W.B. Hickman, <u>Corporate Bond Quality and Investor Experience</u>, (New York: National Bureau of Economic Research, 1958).
- 7. Yutaka Imai and Mark Rubenstein, "Comment," <u>Journal of Financial and Quantitative Analysis</u> (September 1972), 2001-2003.
- 8. B. Malkiel, "Expectations, Bond Prices and the Term Structure of Interest Rates," Quarterly Journal of Economics (May 1962), 197-218.
- 9. R. Richardson Pettit and Randolph Westerfield, "A Model of Capital Asset Risk," <u>Journal of Financial and Quantitative Analysis</u> (March 1972), 1649-1668.
- 10. T.F. Pogue and R.M. Soldofsky, "What's in a Bond Rating?" <u>Journal of Financial and Quantitative Analysis</u> (June 1969), 201-228.
- 11. Daniel Rie, "Single Parameter Risk Measures and Multiple Sources of Risk: A Re-Examination of the Data Based on Changes in the Determinants of Price Over Time," (Rodney L. White Center for Financial Research Working Paper No. 14-72).

- 12. Richard Roll, "Investment Diversification and Bond Maturity," <u>Journal of Finance</u> (March 1971),51-66.
- 13. Ezra Solomon, "Leverage and the Cost of Capital,"

 <u>Journal of Finance</u> (May 1963), 273-279.
- 14. R.C. Stapleton, The Theory of Corporate Finance (London: George G. Harrap and Company, 1970).
- 15. Joseph E. Stiglitz, "A Re-Examination of the Modigliani-Miller Theorem," American Economic Review (December 1969), 784-793.
- 7. "Some Aspects of the Pure Theory of Corporate Finance: Bankruptcies and Take-overs," Bell Journal of Economics and Management Science (Autumn 1972), 458-482.