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. INTRODUCTION

The empirical distributions of price changes for speculative assets
(e.g. common stocks, bonds, etc.) measured over calendar time yield a
higher frequency of observations near the mean and at the tails than
would be expected for a normal distribution. The sample kurtosis is
almost always greater than 3--the value expected for a normal distribution--
and the distributions are commonly characterized as fat tailed and peaked
(i.e., leptokurtic).

The most widely accepted theory to explain the observed distributions
of security returns received its introduction from Mandelbrot [15]. Fama
[7], Rotl [19], Blume [2], and Teichmoeller [22] gave additional empirical
support to this theory--the so-called ''stable Paretian hypothesis.' The
theory states that price changes measured over calendar time intervals
conform most closely to symmetric stable laws with characteristic exponent
a, where 1 < o < 2, For symmetric stable laws, population moments of
order r are not finite beyond o. These symmetric stable distributions
have unbounded population kurtosis and usually exhibit values for sample
kurtosis much greater than 3. Some recent empirical evidence casts doubt
upon the stable Paretian hypothesis (see e.g. Blattberg and Gonedes [1] and
Hsu, Miller and Wickern [14]).

Another but less widely known hypothesis that purports to explain the
high kurtosis values for common stock returns was first introduced by
Mandelbrot and Tayior [16] and Granger and Morgenstern [12] and uses the
theory of subordinated stochastic processes. Subordinated models of security
returns can frequently be described as mixtures of normal distributions. The

hetereoscedasticity associated with such mixtures of normals will cause the



sample kurtosis to have large values. The subordinated stochastic model can
be introduced by recalling that common stock price changes reflect an accumu-
lation of new information during a particular calendar time period. This
accumulation is the sum of many small, independent bits of information, i.e.,
the sum of a large number of independent random variables. I f the number of
these independent random variables is, itself, a random variable, then the
price change of a common stock observed over a period in calendar will be
from a subordinated stochastic model. The subordinated normal model states
that each price change measured over calendar time can be thought of as
the sum, Sn’ of a random number, n, of identically distributed random var-
iables, Xi.] ln the Praetz model [18], and Blattberg and Gonedes model
[1], n obeys a log-normal distribution. In the Mandelbrot-Taylor model [16],
n obeys a non-normal stable law.
Mandelbrot and Taylor [16], Granger and Morgenstern [12], and Clark
[4] have introduced the concept of transactions time and employed it to
refine the subordinated model. They first examined the price changes of
securities in the interval between successive transactions. Next, they
defined a price change over a fixed interval in calendar time {e.g. a day)
as the sum Sn from time t to t + 1 of the price changes from n transactions,
where n is a random variable. Thus the fundamental unit of time in
measuring return is the time it takes to affect a given number of trans-
actioﬁs. The subordinated model with transaction time predicts that the
variability of security return will be positively related to elapsed trans-
actions time during a given calendar time interval and that the
leptokurtosis in empirical distributions will become less after properly
adjusting security returns for the elapsed transaction time. Several

discussions of subordinated models Tink transaction time to the level of
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volume of trading. On this basis, the subordinated model has achieved
some empirical support from the work of Brada, Ernst and Van Tassel [3],
Granger and Morgenstern [12], and Clark [4]. However, to date, the
subordinated model has not been directly tested on a large scale common

stock data file.

The purpose of the present investigation is to extend the existing

empirical work to a large sampie of common stocks to reach clearer and more

reliable conclusions about the validity of the subordinated model of
security returns. The evidence In this paper tends to support the sub-
ordinated model and suggests that the pricing process of the stock market
evolves at different rates on different days, and that the rate of the
evolution of the pricing process is intimately connected with transactions
time. Evidence is presented that shows price changes are not statlonary

in calendar time and the standard deviation is not a well behaved measure

of dispersion (see Officer [17] and Fielitz [11]). Moreover, after properly

adjusting for transactions time, the distributions of price change become

much less leptokurtic and behave more like a normal.

I1.  PRELIMINARY EXAMINATION OF THE DISTRIBUTION
OF PRICE CHANGES

2.1 The Sample

The data consist of dividend adjusted daily return relatives for 315
common stocks listed on the New York Stock Exchange (NYSE) from the
period January 1968 to September 1969--a period of 412 trading days. There
are 412 daily observations for each common stock. Accompanying these
relatives are the number of shares traded daily for each security.z’3
2.2 The Sample Moments and Characteristic Exponents

Estimates of measures of the sample moments of each security provide

a description of the sample distributions of these relatives. In Table 1,



the average, median and quartile values for skewness indicate the distribu-
tions are slightly asymmetric.h The average, median and guartile values

5

for kurtosis show that the distributions are highly leptokurtic.” It has

been demonstrated that estimates of a common stock's characteristic
exponent, o,will be less than 2 when taken from leptokurtic distributions.

Using the procedure described by Fama and Roil [9], o is estimated for

each security and the results compited in Table 1. As expected, the average

~

estimate of o is less than 2 {a = 1.58) and is similar in magnitude to
values reported by Teichmoeller [22] and Officer [17].
A1l of the results of this section indicate the sample frequencies

conform to a leptokurtic distribution for daily price changes.

111, STATIONARITY AND SUBORDINATED MODELS

It is well known that mixtures of normal distributions (e.g. with
the same mean and changing variances) can cause leptokurtosis in observed
price changes (see Sims[21]).Thus, if distributions of price changes over
successive time periods take the form of mixtures of normal distributions
with changing variances, fatter tails than the normal would be expected.
Fama [7] was among the first to articulate this type of non-stationarity
but he concluded that his evidence was more consistent with non-normal
symmetric stable distributions than with mixtures of normals. More recently,
Officer [17) found for a sample of NYSE securities that estimates of the
characteristic exponent computed using daily price changes were constant
over various time periods; this is consistent with stationarity.7 In fact,
the particular stable Paretian model developed by Fama and Roll assumes
price change sequences are stationary in calendar time; whereas, the

subordinated model generally assumes that price changes are non-stationary



in calendar time and stationary in transactions time. A special case
introduced by Mandelbrot and Taylor has the property that price changes
can be stationary, stable, non-normal in calendar time, yet subordinate to a
normal distribution when translated into transactions time.
3.1 A Subordinated Normal Model of Stock Price Changes
A subordiﬁated normal model follows directly from the theory of
random sums. Let z{Ad) be the price change measured over an interval on a
transaction time scale Ad. Further assume that z{Ad) is a Gaussian process
with the following properties:
1. Efz(ad)] = u(ad)

Var[c(ad)] = o2 (Ad)

&)

3. E[z{Ad), z{ad'}] = 0; Ad # ad'

4, z{(ad) is a stationary process,

Consider another stochastic process d(At) which evolves over calendar
time intervals, At, with the properties:

5. d(at)> 0

6. E[d(at), d(At')] = 0; At # At'

Finally, establish the subordinated process P{At) =z{d(at)]. Given
the properties of z{Ad) and d(At), the process P{At) must have the following
properties:

7. EP()] = ud(st)
8. Var [P{at)|d(at)] = czd(At)

9. E[P(at), P(at')] = 0; At # At

10. P(at) = pd(at) + ¥ Var{p(at) |d{at)] Z(at) where Z(At) is
distributed as § {Ad), and is unit normal.
The distfibution of P(at) will be subordinate to a normal distribution and

S : : I : . . 2
has 4 conditional normal distrlhution function with variance o"d(At).
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If we posit a transactions time scale measuring the velocity of price
changes, ¢t (Ad), changes in transactions time can correspond to the directing
variable d(At), where d(At) tells how much transactions time has elapsed
between points in calendar time. Feller [10] has shown that if d(at)
is a true stochastic process with properties 5 and 6, an additional process
may be formed for P(At). In real ity we hypothesize this process generates

the observed distribution of price changes and is subordinated to z(Aad) and

directed by the distribution d{At). z(ad) becomes the unobserved price change

in transactions time and is a single effect of the pricing process where

d(At) is the amount of transactions time that has elapsed over a unit in

calendar time t to t+l. Clark and Granger and Morgenstern suggested that

transactions time can be usefully approximated by cumulative volume nf
trading up to calendar time t+l. Empirically, d(At) would become a
function volume of trading over a unit in calendar time t to t+].
3.2 Non-Stationary Variances
The subordinated normai model provides obvious implications for
observed prices change over calendar time. For example, the variance of
P{at) will vary with increments in the directing process d(at); hence, the
larger the volume of daily trading the greater should be the absolute
magnitudes of observed brice changes for a security. Note that if we
rank calendar time intervals {e.g., days) by the size of the increments
in the directing process {e.g., daily volume) we should expect to observe
different magnitudes of Var[P(At) [d(at)] as a function of the rank. This
would Tndicate shifting variance of price change as a function of volume.
To test the hypothesis that price changes are not stationary in
calendar time and that the number of transactions is connected with the
true velocity of price evolution, we first pursued the implications of the

relationship between variance of price change and volume.



In sample data this phenomenon would be supported by a relationship
between volume of trading on day At, (taken as 3 surrogate for d(At), and
the square of the difference between the price change and its mean on day
At. Such an association would indicate a mixture of normal distributions and
could produce the large sample values on kurtosis. (See Clark [4] for a
discussion of this association).

The 411 daily price changes for each security were first ranked from
high volume to low volume, and then arranged in 10 groups of 41 days each.
The first group included the 41 price changes corresponding to the highest
volume of trading days,etc. {(one observation is tost). The variance of
daily price changes was computed for each group for each security as

illustrated in Table 2 for Allied Chemical.

Consider the effect of this grouping technique on daily estimates of price
change variance. Daily trading volume and estimates of price change variance ap-
pear to have a positive relationship. This result is consistent with the hypothesis
that the observed leptokurtosis in empirical distributions of daily price change
come from a generating pProcess that is a mixture of distributions with differing

variances. The variance itself appears to be a function of trading volume.

For a closer look, the variance of daily price change in each volume
group for a security has been standardized by dividing by the securities'
total variance of daily price change. This Procedure was repeated for all
315 securities. The ranks of average values of the standardized variance
of price change are perfectly correlated with the ranks of the daily voiume
of trading, and the values, from the highest volume group to the lowest,
are the following: 2.24, 1.35, .11, .94, .80, -73, .63, .58, .48, and .37.
Hence, it can be concluded larger than average price changes (both positive

and negative) are associated with relatively high volume of trading over
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the same calendar time intervals. This supports the subordinated stochastic

process hypothesis and casts serious doubt on the stationary version of
the symmetric stable model.
3.3 A Regression Model for Transactions Time

Using trading volume as an approximate transactions time clock, it

can be hypothesized that the conditional variance of price change for a

security will be a linear function of trading volume, e.g.
Var[P(at) [V(at)] = a_ +a, V(At), st = 1,2,..., T; where V(at)

i5 the number of shares traded on At, and Var{P(At)|V(At)]is the variance
of price change conditional upon the volume of trading on At. However,

the conditional variance cannot be directly observed on At. Over each
calendar time interval, say a day, the observed square of daily price
change after adjusting for the daily mean PZ(At) will be equal to the
conditional variance plus a random error term.

P2(at) = Var[P(at)| V(at)] + e(at)

Following these developments a linear regression model can be established,
i.e.,

PZ(At) =a +a v{at) + e{at),
which can be used to provide time sequencial estimates of conditional

variance, by

V;r[P(At)|V(At)] = ;0 + 51 V{at)
At = 1,2,..., T. In practice, the particular form of the transaction time
predictor was determined after the linear model was compared to various non-
linear models. The empirical comparisons indicated the linear model with
a constant term provided the best description.8

The average, median and quartile values of the regression statistics,

reported in Table 3, show that there is a significant relationship between

magnitude of price change and level of trading volume for most securities;



therefore, trading volume can be taken for an instrumental variable in
measuring transactions time. In most instances, the value of the constant

term was positive.

3.4 Volume Groups and Kurtosis

Under the subordinated model, the value of the sample kurtosis .from
daily price change should increase with increases in the amount of trans-
actions time that elapses within a day. Specifically, if the volume of
trading approximates the number of increments of elasped transactions time
and the variance of daily volume is large relative to the mean of daily
volume, the values of the sample kurtosis should be iarge.9 Thus we can
expect the sample Rgurtosis within each relatively homogeneous volume
group to be significantly lower than the sample kurtosis estimated
over all 411 trading days, for each security.

As expected from the volume groupings, kurtosis can be greatly re-
duced within volume groups as compared to the overall samp]e.IO The

results are {llustrated for Allied Chemical in Table 24 the within

volume group kurtosis valueg were less than the overall value of

6.88852. Moreover, this type of reduction in kurtosis was observed in

all 315 securities. Thus, it appears that much of the leptokurtosis

in empirical distributions of price changes can be eliminated by combining
price changes into similar volume of trading groups.

In Table 4, decile values or the sample kurtosis values are reported
for the 315 securities. This distribution is compared to a revised dis-
tribution of sample kurtosis values from each security and each volume
group {making 3150 observations). The median is reduced from 4.92 to 3.34.
The results indicate distributions of price change with "thinner tails,"
much closer to what could be drawn from a normal distribution (with mean
3.00 and variance equal to 24/N, where N is equal to the number of observa-

tions). Hence, we conclude that kurtosis can be significantly reduced after



the non-stationarity of price change variance is properly accounted for.
1V. GOODNESS OF FIT TESTS OF THE STABLE AND SUBORDINATED MODELS

One obvious method of analyzing the distribution of price changes for
securities compares the theoretical standardized cumulative probability dis-
tribution functions (CDF's) with the observed standardized CDF's. Although
there are many procedures for making these comparisons, the two alternative
procedures commonly used involve the Kolmorogov=Smirnov (KS) statistic
and the Chi Square (xz) statistic.1]

Both the KS and the xz statistics have been computed as summary
measures of the degree of approximation of the actual CDF's to the
theoretical CDF's. However, only the x2 values are reported, as both the
xz and KS give substantially the same results, and the KS statistic seems
less theoretically appropriate.

The specific procedures used in this section are based upcen those
of Blume [2] and Hsu, Miller and Wickern [14]. The standardized variate
is calculated under the stablée model as

T, {at) = P(Atz - ; ; At =1,2,...,411, for each security, where P(At)

c
is the daily price change for a particular security, ; is the Fama-Roll [8]
truncated mean estimate of the location parameter of the stable model,and
E is the Fama-Roll [9] estimate of the scale parameter of the stable model.
c is defined as Yl/a where vy is the scale parameter of a stable model and
o is the characteristic exponent of a stable model. Fama and Roll (91
show that ¢ can be estimated without assuming a value of o. Next, the
theoretical standardized distributions and computed conditional upon values
of a = 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0 (see the tables in [8]). Also we

set a = a using the Fama-Roll estimation procedure, referred to previously,

for a. Hence, the theoretical standardized cumulative distribution functions



corresponding to Ta(At) are calculated for each of 7 values of 4
for each security.

The unit interval for the theoretical, standardized CDF's are
Partitioned into 17 unequal subintervals and the corresponding number of
cumulative frequencies in each subinterval are counted for each security

12

and each value of o <. A X2 value is computed for each @, and the results

are displayed in Table 5.
Under the subordinated normal model the price change generating

process for each security can be assumed equal to (see equations 7 to 11)

P(at) - u(at) = VVar[P(AOI T V(ED)T Z(st); At= 1,2,..., 811, where

V' Var[P{at) [V(At)] Is the conditional standard deviation of P(at)

and is, itself, a random variable. Z(At) is unit normal with mean equal
to zero, variance equal one, and kurtosis equal to three. The conditional
standard deviation is estimated on each day for each security via the

regression models of section 3.3, as

Var p(at) | v(at) =V§O +a v(at)

Thus, an adjustment procedure for translating daily price changes
into transaction time.is used to establish an "adjusted variate"

R Plat) ~u(at)
Z(at) =

V= y At=1,2,.. 0,481
Var[P(at)| v(at)]

- A

I f §o+ a V(At) correctly measures elapsed transaction time, E(At)
should be normally distriButed under the subordinated normal model. Further-
more, it should have mean equal to zevo, variance equal to one and kurtosis
equal to three. However, if the correct transaction time function has not
been found via the regressions of 3,3, there may be random elements of

transactions time still in the adjusted series and z{at) may not be normally
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distributed. To assess the distribution of E(At), the location and scale
parameters are estimated, as before, and the standardized variate, Ta(At),

is recorded for At= 1,2,..., 411. The theoretical CDF values are obtained
conditional upon ¢ = 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 and a =§. The unit

interval is partitioned into 17 unequal subintervals and the number of cumula-
tive frequencies in each subinterval counted for each security. Tabulations

of xz at various critical values are then made.

The number of times the X? value exceeded a .corresponding critical
value ( which is a function of the degrees of freedom and confidence
level) is counted for four critical values and each assumed characteristic
exponent (e.g., the critical value for the x2 statistic at the .005 level
of confidence is 31.3 for 14 degrees of freedom). The purpose of computing
the xz values is to summarize the degree of approximation that exists
between the actual security returns and those hypothesized under the
stable and subordinated models. The results are reported in Table 5.

As expected, the tabulated values of the XZ statistic suggest the nor-
mal mode! for unadjusted security returns (a = 2) gives the poorest approx-
imations. To illustrate, the normal model yields XZ values greater than
the corresponding critical x2 value at the .005 level for 262 of 315
securities. As the characteristic exponent used in generating the theoretical
distributions for unadjusted security returns is reduced from 2.0, the
tendency is for the actual distributions to be closer to the theoretical
distributions. The symmetric stable model with 1.5 <g. <1.6, usually gives
the best approximations, and when the characteristic exponent is reduced
beyond 1.5 the xz values tend to increase.

Let us turn to the subordinated normal model. After price changes have

been properly adjusted for volume, the xz values show the subordinated
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normal model achieves better approximations than the normal model for
unadjusted securlity returns. In other words, ;(At) is more normal than
P(at). In fact, at each assumed characteristic exponent, from o = 2.00

to a = 1.60, the corresponding subordinated mode! gives closer approximations
to the actual return distributions than the correspording symetric stable
model.

Although the XZ tests are encouraging and reveal that price changes
adjusted for transactions time are much less fat tailed than can be ex-
pected from a non-normal stable distribution with 1.5 <o > 1.6. The sample
kurtosis values of Z{At) are still too high for normaltity; the average is
equal to 3.65.

The results support the subordinated normal model by showing that
adjusting price changes for volume achleves closer approximations to observed
price changes than otherwise. However, the subordinated normal model does
not describe actual distributions of price changes better than the symmetric
stable model with 1.5 < a >1.6. Furthermore, the best approximations are
achleved when the theoretical CDF's are generated assuming that adjusted
price changes are from a subordlnated stable model with characteristic exponent
o, where 1.65 < o > 1.80. This is consistent with a general version of the
subordinated model presented by Mandelkrot and Taylor. They argue that
Z{At) might be symmetric, stable with characteristic exponent equal to qt,
and directed by the symmetric, stable transactions time variate with
characteristic exponent equal to az<1. Accordingly, P(At) could be symmetric
stable with characteristic exponent o equal to the product of a; and as,

i.e. a;* ap, and subordinate to Z(At}).
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There are other explanations for the kurtosis that remains in the
adjusted price change ceries. For example, it may be that V;r[P(At)\ v(at)]
is measured with error by the linear volume regression model. In this case,
the adjusted variate, E(At), would include a random element of transaction
time, and as Clark has shown, the inclusion of transaction time will almost
always lead to increased kurtosis value and to results like those in
table 5.]3

From these results there is little doubt that subordination exists in
security return data. However, this fact does not rule out a stable, non-
normal subordinated model (e.g., see Mandelbrot and Taylor), nor does it
confirm a subordinated normal model. These goodness of fit results suggest
that the xz statistic is inadequate to distinguish between the severai
competing hypotheses, since from Clark it is clear that for the suybordinated
model any variation in transaction time increments can result in retatively
large sample kurtosis. Thus, if the true transaction time has not been
found with the assumed regression model, using the regression model to
adjust price changes will result in distributions which are still lepto-
kurtic. Hence, it is not surprising that reducing the characteristic ex-
ponent from 2.0 achieves better approximations after price changes are
adjusted for v01ume.‘

We conclude that adjusting price changes by volume reduce the fat
tails of the-distribution of price change ( note the average‘Q for 2{(At) Increase
from 1.59 to 1.71 after this adjustment is made), but not enough for a

subordinated normal model to be unequivocally established.
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V. TESTS OF STABILITY

One issue that remains is whether empirical procedures can be developed
to distinguish between the finite variance subordinated model of Clark and
the general class of subordinated models proposed by Mandelbrot and Taylor.
The stability test may help us here. Recall that Mandelbrot and Taylor have pit
forth a subordinated model in which common stock prices measured on a
calendar scale are symmetric, stable with characteristic exponent o < 2.
They posit a special case for which calendar time price changes are
subordinate to Gaussian transactions time price changes, directed by a
transactions time variable that is a non-normal stable random function
with infinite mean. The Mandelbrot and Taylor example generalizes to
arbitrary stable processes where P{At) has characteristic exponent

a =a_-+a, and is subordinate to Z(At) with exponent o < 2, directed by

1 2 1
. 15 :
d{At) with exponent a, < 1. Thus the Mandelbrot and Taylor model is a

case where common stock returns are both stable and subordinated.

A test for the stability of calendar time price changes, recently

employed by Teichmoeller [22], Officer [17], and Blattberg and Gonedes

[1] , is performed on our sample of daily stock returns. The characteristic
is estimated for each security for non-overlapping sums of 1,3,5,7 and 9
daily returns, chronologically ordered. As a result, for each estimate of
the characteristic exponent, there are 411 observations for sums of 1 and
45 observations for sums of 9. If calendar time price changes are stable,
the estimate of the characteristic exponent will remain the same re-
gardless of the sum size (note the converse is not true).

o The results, in Table 6, show a tendency for the average, median and

quartile values of the characteristic exponent to increase for larger sums.

This is in agreement with Officer (171 and Blattberg and Gonedes {11 but



16
contradicts Teichmoeller [22]16. The tendency to increase is inconsistent
with any stationery, symmetric stable model with «<2 and consistent with a
finite variance subordinated model, Thus it is inconsistent with the Mandelbrot
and Taylor infinite variance model.

Recently, an alternative procedure for testing for stability has been put
forth by Hsu, Miller and Wickern [l4]. To incorporate their modifications,
the order of the observations has been randomized {as opposed to a chronol-
logical ordering) and the stability tests performed again. As before, the
results presented in Table 7 show a pronounced tendency for the average,
median and quartile values of the estimates of characteristic exponent to
increase with larger sum sizes (o increases from 1.58 for N = 1 to 1.91

~for N = 9) and suggest that the price changes are not stable Paretian. In
addition to randomizing the order of returns for each security in estimating
a, Hsu, Miller and Wickern also propose a stability test that adjusts for
the possibility of shifting scale parameter over time.
To demonstrate that the tendency for the characteristic exponent to
increase with sum size is not due to shifting scale parameter over time
. the sample time period was divided into two equal parts and the scale
parameters estimated for each security. The stability tests were repeated
after mutliplying the observations from the second half of the time period
by the ratios of the scales estimates from the first half of the sample

c
divided by those from the second half of the sample, :%%%3 for each of the

c
315 securities. The results do not change and confirm the earlier findings

that the & is equal to 1.58 for N =1 and 1.91 for N = 9.

The same test for stability can be performed on the adjusted price
change variate Z(At) where calendar time price changes have adjusted
via the linear regression models of trading volume. If Z{At) is non-normal,

stable, and properly adjusted for transactions time,estimates of the
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characteristic exponent of Z(&t) should not change as a positive function
of the length of the calendar time interval used to observe it. Accord-
ingly, the characteristic exponent for Z{at), t = 1,2...,411 for each se-
curity has been estimated for non-overlapping (chronologically ordered)
sums of 1 and 9. The average estimate of a for sum size of 1 is 1.7}.
For sum size of 9 it is 1.91. Recall that under any stable model the
characteristic exponent o is invariant under addition, thus it should not
systematically increase as we create sums of random price changes. This
tendency to increase is consistent with a subordinated normal model and
inconsistent with a non-normal stable subordinated model, and can only
occur if the sample is not drawn from a stable, non-normal distribution.
Similar results are obtained when the stability test is constructed with

randomly ordered returns (see Table 8).



VI. CONCLUSIONS

Distributions of stock price changes were examined to determine |f
the stable Paretian model articulated by Fama and Roll provided as good
a hypothesis as the subordinated models of Clark (4] and Mandelbrot and
Taylor [16] and Praetz [18] . The results indicate that the distributions of
stock price changes have many of the properties predicted by a subordinated
model .

The important implications of the findings are:

1. The sample standard deviation is not stationary in calendar time
and, in some regards, is not as well behaved as found by O0fficer [17]
supporting the findings of Fielitz [11].

2. The absolute magnitude of daily price change appears to vary with
the number of transactions during the day. Hence, the distribution of price
change is probably not-stationary in calendar time. We proposed a change
in the time scale to account properly for the non-stationary and to es~
tablish a subordinated model of price changes.

3. Actual price changes for common stocks appear to be better

described by a subordinated probability model and not a stationery,

symmetric stable model. The evidence taken in its entirety makes a

good case for the finite variance of price changes when they are properly
adjusted for transactions time. It tends to contradict the infinite
variance subordinated model proposed by Mandelbrot and Taylor, but is

not so strong that it rules out this particular version of the stable

Paretian theory.



1. Estimates of Sample Properties of the

Distribution of Price Changes

Parameter a Eharacteriatic
or fractile Skewness Kurtosis exponent
average -.58 4.93 1.58

F25° +.25 k.22 1.49
median -. 64 4, 02 1.57

F75 -1.43 5.93 1.67

a ' .
Skewness 1s computed as a function of the percentage of
observations below the mean. (see footnote L)

bKurtosis is computed as the sample value of the fourth moment
divided by the square of the variance.

cThe .25 fractile value.

dThe Fama-Roll [9] estimator of the characteristic exponent,
using the .95 fractile value.



2. Volume Groups and Price Change
Variance: Allied Chemical Corporation

Standardized c
Variance of Kurtosis

Variance of Daily Price Daily of Price

VYolume Mean Daily Daily Price b
Group Volume (000) Change Change Change
18 1116.67 .00106 4.07692 3.38234
2 506.57 . 00021 .80769 5.41482
3 350.97 . 00023 .88462 3.40513
4 264,61 .00024 .92307 4.99985
5 218.26 . 00027 1.038L46 4.30899
6 187.80 .00018 .69230 3.53504
7 162.13 .00015 .57697 2.10356
8 143.36 . 00010 .38386 3.55952
9 122,66 .0G010 .38461 2.65631
10 88.12 . 00009 34615 2.34435
Entire Sample 300.17 .00026 1.00000 6.88852

a. The volume group representing the 41 days of greatest volume.

b. Computed by dividing total variance of price change into variance of
price change for each volume group.

c. Kurtosis has an expected value of 3 and variance of 24/ Nunder a normal
hypothesis (where Nequals the sample size).



3. Regression Estimates for Price Change

Variance-Volume Model

Parameter -6 -6 2
or fractile intercept (10°) slope (10°) R F{1,409) T
b c d
mean 179.42 2.71 . 068 40.99° 6.82
F25 67.61° .86 .045 19.78  L.74
median 180.38 2.34 . 084 38.01 6.12
F75 316.86 5.81 . 162 72.45 §8.62

The .25 fractile of the intercept from 315 OLS regressions.

bThe average coefficient of determination adjusted for degress of freedom.
“The average value of the F statistic with one degree of freedom and 409
observations.

dThe average value of the T statistic.



Lk, The Distribution of Kurtosis
of Daily Price Change

Sample Within Group Kurtosis
Fractile Kurtosis Values Values From Each Security
Estimates From Each Security and Each Volume Group
0.00 2.99368) 1.79037
0.]10 3.82579 2.46627
0.20 4.1409) 2.70693
0.30 L_29h46 2.92188
0.40 4.61911 3.11201]
0.50 (median) 4.91955 3.34285
0.60 5.20642 3.60357
0.70 5.63602 3.89934
0.80 6.32510 k.39578
0.90 7.98264 5.26704
1.00 116.77020°¢ 29.68614

The minimum value of sample kurtosis from 315 securities (NYSE).
The .10 fractile value from the sample.

The maximum value of sample kurtosis from 315 securities (NYSE).
An unbiased estimator of the .x fractile ,except for the 0 and 1

fractile for which the sample values were used.



5. Goodness of Fit Tests: The Number of Times Chi Square
Values Exceed Critical Values

A. Daily Price Change

Levels of Confidence

Cc

Characteristic Exponents .05 .025 .01 . 005
1.58° 189. 155. 124, 105.
1.50 243, 209. 176. 148,
1.60 194, 160, 131. 109.
1.70 180. 159. 137. 120,
.80 212. 196. 170. 161.
1.90 254, 240. 227. 214,
2.00 293. 279. 267. 262.

B. Daily Price Change Adjusted
for Volume of Trading

1.71b 143, 122, 97. 79.
1.50 259, 241, 208. 178.
1.60 202. 170. 136. 107.
1.70 146, 122. 102. 87.
1.80 142, 118. 99. 80.
1.90 _ 1785, 159. 138. 125.
2.00 218. 207. 188. 174.

%The average of the estimates of a for price change of 315 securities (NYSE).

bThe average of the estimates of a for adjusted price change of 315 securities
(NYSE). '

P(x2 > 31.3 | df = 14) = .005, df = degrees of freedom.



6.

The Characteristic Exponent for
Sums of Daily Returns:
Chronological Ordering

Parameter Sum Size
or fractile 1 3 5 7 9
Mean 1.58 1.70 1.76 1.78 .85
F25° 1.59 1.61 1.63 1.67
Median 1.70 1.75 1.77 1.85
F75 1.82 1.91 1.97 2.00

aThe .25 fractile value.

7.

Random Ordering

The Characteristic Exponent for
Sums of Daily Returns:

Parameter Sum Size
or fractile 1 3 5 7 9
Mean 1.58 1.82 1.90 1.90 1.91
F25 1.70 1.77 1.74 1.74
Median 1.81 1.91 1.93 1.94
F75 1.96 2.00 2.00 2.00




8. The Characteristic Exponent for
Sums of Daily Adjusted Returns

Sum Size
Parameter 1 3 5 7 g
Chronological
ordering mean 1.71 1.78 1.89 1.90 1.91
Random ordering 1.71 1.82 1.85 1.89 1.89

mean
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helpful comments of Marshall Blume, Tom Copeland and James Pickands. Bert
Tyler provided computer programming assistance.

1Suppose that Xi”’xn are random variables with common distribution
F. The sum Sn = Xi +,,, + Xn has the distribution F#, namely the n fold
convolution of F with itself. However, the fixed n can be replaced by a
random variable N with its own distribution. Thus the number of N trans-
actions can also be a random variable with probability distribution T{N=n}

= ﬂn, the conditional distribution of Sn given N = n is F* and the uncon-

n*

ditional distribution is given by U=5. ¢ F
=1 'n

The distribution of U is not necessarily a member of the stable class
and probability limits on sums of U may not exist (Feller [10], p. 258).
However, if the number of transactions (elements) Ni”’Nn is a
random variable such that

plim Nn

— =

n
then the central limit theorem holds and SN will tend toward normality (Clark
[4], Feller [10]).
2The data file is a condensed version of the ISL Quarterly Historical
Stock Tapes distributed by Standard and Poors Corporation. The 315 NYSE
securities have continous price and volume data from January 1, 1968 to
September 30, 1969. The volume data do not include third market and re-

gional exchange volume and do include all block trades. Adjustments have



been made for all stock splits and stock dividends and new issues during the
sampling period attempting to hold the number of shares ocutstanding constant.
1f, after these adjustments were made, the number of shares outstanding
changed by more than 2.5% over the period the security was eliminated.

3A Price change is measured as a return relative which is defined
Pt + Dt
P

as

= = Rt; where Pt is price at time t and Dt are dividends paid out
from time t-1 to t. The return relative is converted to natural logarithms.
In addition, much of the analysis was repeated using the percentages.
Fama and Roll have reiied on the natural logarithm of return, whereas Blume
and Officer have reljed on the percentage return, There appears to be no djf-
ference in daily price changes. The theoretical implication of using natural
logarithms or percentages is unclear.
Skewness is measured as a function of the percentage of sample

observations less than the .5 truncated mean, or

{(percentage below mean - 1) NZ
1

2

with sample size N. This statistic has a normal distribution with mean
zero and variance one. It has been used by Roll [19], Kurtosis is measured
by dividing the square of the variance into the fourth moment. The mean is

estimated by employing the truncated mean estimator developed by Fama and

Roll [9]. Moment estimator of skewness has also been calculated with
similar resuits. The fractile estimator was reported for expository
reasons, since Roll reported it for bond returns, and because it is more
robust than the moment estimator,

5The variance of kurtosis from a normal population is 24/N where
N is the sample size. Thus sample kurtosis that lies between 2.52 and 3.48

is within two standard deviations of the true value, As expected over 95%



of all sample values are beyond this range. Note that the sampie
error of sample variance 02 from a normal population is ZUAIN and
correspondingly, of the sample fourth moment My from a normal parent is
(see Clark (4)).
Even if price change distributions do not obey stable laws, estimates

of o will measure the fatness of the tails (see [1] [4]).

TRecently Fielitz [11] and  Hsu, Miller and Wickern [14] have

provided evidence indicating that the probability distributions of stock
price changes are not stationary in calendar time,
85pecifically, the following forms of f[V(At)] were tried:

4
fIviat)]

V(at)
flvian)] = e ey
In several specific instances PZ(At) was replaced with [P(At)l with
ne clear superiority in the tests.
9

The kurtosis of price change of a subordinated distribution can be

expressed as a function of the variance of volume by

2

. N o
plim b =301 + ; )

(02)2 GV

where ci is the variance of the number of transactions over At and GV is the
mean of the number of transactions over At. Clark [4] relied on a similar
volume grouping to examine hetereoscedasticity and kurtosis for cotton

futures.
]OAny within volume group sample kurtosis that lies between 1.47 and
.53 is within two standard deviations of 3, which is expected under a nor-
mal model. 85% lie within this range.

Note we do not expect the average sample value to reduce to 3 after

the volume grouping since this is an imperfect procedure and within each



1]Using the K-S test is appropriate since the critical values depend
upon known parameter values for gﬁnerating the observed standardized CDF's
Praetz correctly relied on the X, but he makes a significant error.
He estimated his observed standardized CDE's by subtracting the sample
means and dividing by the sample standardized deviations. However, as proved
in Cramer [5]1, for compos i te hypotheses one must obtain maximum liklihood
estimates for the unknown parameters. Fama and Roll's results demonstrate
that sample means and sample standard deviations are not adequate estimates
for the parameters of stable laws when a<2. Blume [23] and Hsu, Miller

and Wickern [14] relied on the X~ test.

It should be noted that the X2 is a robust goodness of fit test
but is not the most powerful [ 8,p.335]

]zThe unit interval was partitioned into the following subintervals:

Subinterval

0.00-0.02 0.60-0.70
0.02-0.04 0.70-0.80
0.04-0.06 0.80-0.90
0.06-0.08 0.90-0.92
0.08-0.10 0.92-0.94
0.10-0.20 0.94-0.96
0.20-0.30 0.96-0.98
0.30-0.40 0.98-1.00
0.40-0.60

Obviously the choice of subintervais is partially arbitrary.
One requirement is that the expected frequency in each subinterggl
be greater (or equal to) 5. The Pearson approximation to the y< is
not adequate for lower subinterval sizes.

We choose finer subintervals under the tails of the distribution
because this is where it is easiest to distinguish between leptokurtic
distributions and non-leptokurtic distributions. Note that Blume [2] used
equal subintervals in developing a %2 goodness of fit test.

13There is potential blas as a consequence of introducing error with
an incorrect speciflcation of d{at) in obtaining the adjusted price
serles. It might be asked whether it Is possible to transfrom a fat tailed
variate, e.g., P(At), into a normal variate, Z(4At), by Introducing
specification error via the adjustor d(At) . This is potentially possible
if a, +a, V({At) overestimates the variance of P(At) on very high price



changes and understates the variance of P(At) on small price changes, the
result would be to cut off the tails of P{At). This might be true if

the "true'' volume clock was a_ V(At)?! and, instead a + a V{At) was
used. However, as reported if the text, the linear volume function

gave the best results i.e. closer fits and better Durbin-Watson values.
Inspection of several scatter dlagrams revealed that the linear procedure
always has both positive and negative errors on the high and low ends

of the trading volume range.

hAnother related issue is if Z(at) is truly a non normal, stable
variate, with infinite variance and Var(P(At)| V(At)) is used to adjust
P(At). Interestingly, Z{at) will 1ikely be more fat taliled than P(At)
if a variance estimate is used in the adjustment procedure when, in
fact, its theoretical value is infinite.

One procedure for reducing measurement error and assessing this
potential bias in the time series transaction time clock used in section
33 is to estimate f(V(At)) cross sectionally, by establishing, ¢, =
a, taV., i=1,2,.,.315 where, ¢, is the Fama Roll estimate of the
scale patameter of calendar time prices for security i over all time and
V. is the average daily volume of trading for security i (adjusted for
the number of shares outstanding). This regression model is estimated
with a_ = .00981, a = .17053 and, coefficient of determinatjon, RZ =
.h55399 Next the adjusted variate Z(At) is computed using c where a
and a, are the same for all securities. The X% is determined as efgre,
over a grid of ¢, o values and the number of times the value of x° exceeds
a corresponding critical value is counted for each o, c{for each security).
The results are tabulated.

Daily Price Change Adjusted
for Volume of Trading

Levels of Confidence

Characteristic Exponents .05 .025 .01 .005
1.69° 157, 127. 102. 89.
1.50 255, 232, 200. 173.
1.60 202. 167. 135. 114,
1.70 144, 119. 102. 90.
1.80 163. 138. 5. 107.
1.90 197. 185, 169, 146.
2.00 235, 22k, 213. 204,

a. The average of the estimates of o for price change of 315
securities {(NYSE).

b. The average of the estimates of o for adjusted price change
of 315 securities (NYSE).

c. P(x2>31.3 | ©=14) = 005 , 0= degrees of freedom.

Clearly the results are not an improvement over those reported In the
text.



15Mandelbrot and Taylor [16] discuss the properties of a stable non-
normal subordinated model. From Feller {101, it can be shown that if
d(At) follows a positive symmetric stable distribution with bounded
0 <a, <1, the unconditional distribution d(At) will be symmetric
stable distribution with o, equa! to 2a1 =a, < 2. The importance of the

Mandelbrot and Taylor analysis is to show that under one set of assumptions
the non-normal stable Paretian model is deriveable from a subordinated
model. Thus, the possibility exists that there is no inconsistency between
the subordinated model and the stable Paretian model. However, the Clark
subordinated model is logically inconsistent with the non-normal stable
Paretian model.

16There is a potential problem in interpreting the results of these
stability tests since Fama and Roll [9] presented evidence that estimates
of o are biased downward and the bias is greater with small sample sizes,
Hence if estimates of « are corrected for bias there could be a more
pronounced upward trend in o as_sum size increases and sample size decreases.
Fama and Roll [9]) show that if o is assumed to be equal to 1.5, the down-
ward bias in a , estimated in the fractile range .%%5 to .97 is .01 for
sample size 99, and .09 for sample size 49. In the present study the
sample size is equal 411 for sum size equal to 1 and 46 for sum sizes equal
to 9. Thus adjusting for the downward bias could produce values as much as
-09 greater than otherwise. Clearly the upward drift in o may be significantly
understated if the bias is not properly Incorporated in the analysis.
Fama and Roll's estimating procedure utilizes estimates of fractile values
for standardized price change variates. Also, Fama and Roll's results indicate
that a should be the same at each fractile; thus any systematice change from
fractile to fractile would indicate wither a poor estimator (large sample
error) or non-symmetric stable underlying empirical distributions. For
example, it is possible that & may be a function of the fractile selected.
This type of systematic variation in estimates of & as the feactiles change
would reflect unfavorably om the hypothesis that sample data are characterized
by symm?tric, stable non-normal distribution. The results are tabulated in
Table |'.

The pattern of these estimates casts some doubt on the adequacy of the
symmetric stable model for describing the distribution of price changes
of common stocks in the sample. The results may mean there is enough
skewness to effect the Fama-Rol! estimator of a which was developed assuming
symmetry. It is also possible .that the shapes of the subordinated distribution
are different than the symmetric stable distributions, although they both
ailow for fat talils.



1'  ESTIMATES OF THE CHARACTERISTIC
EXPONENT AT DIFFERENT FRACTILES

Parameter
or fractile F90° Fg4 Fgs5 Fo6 Fg7
average 1.51b 1.55 1.58 1.60 1.64
F25 1.39 1.56 1.h9 1.53 1.57
median 1.51 1.54 1.57 1.61 1.65
F75 1.64 1.66 1.67 1.70 1.73

3The .90 order statistic used to estimate o.

bThe .25 fractile of the distribution of a for 315 securities (NYSE).
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