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The Arbitrage Theory of Capit~l Asset Pricing

The purpose of this paper is to rigorously examine the arbitrage model of
capital asset pricing developed Im Ross [1971, 1872]. The arbitrage model was
proposed as an alternative to the mean variance capital asset pricing medel, intro-
duced by Treynor, Sharpe and Lintner, that has become the major analytic tool for
explaining phenomena observed in capital markets for risky assets. The principal
relation that emerges from the mean variance model helds that for any asset, i,

its (ex ante) expected vreturn

where p is the riskless rate of interest (and even if a riskless asset does not
exist, p iz the zero-beta return on all portfolios uncorrelated with the market

portfolioﬂ; A is the expected return on the market, E,, minus p, and

he =

i

Somlqm
=

is the beta coefficient on the market, where c% is the variance of the market

2

portfolio and ot is the covariance between the ith agset and the market portfolio.
The linear relatlion in (1) basically arises from the mean variance efficiency

of the market portfollic, but on theoretical grounds 1t is difficult to justify either

the assumption of Normality in returns or of quadratic preferences to guarantes

such efficiency, and on empirical grounds not only the assumptions but the conclu-

sions of the theory have also come under attack.’? The restrictiveness of the

assumptions that underly the mean variance model have, however, long been recognized,

hut its tractibility and the evident appeal of the linear relaticon between return,

E

+, and risk, b;, embodied in (1) have ensured its popularity. An alternative and

in many ways mcre satisfactory theory of the pricing of risky assets that »etains



many of the Intultive results of the original theory was develoned In

and [1872].
In its barest essentials a simple case of the argument presented there was
as follows. Suppose that the random returns on a subset of assets can be expressed

by a simple factor model

where 5 is a mean zero common facter, and Ei iz mean zZero with the veotor <e» anffi-
ciently independent to permit the law of large numbers to hold. Neglecting the
noise term, e;, as discussed in Ross [1972] (2) is a statement that the state space
tableau of asset returns lies in a two dimensional space that can be spanned by

a vector with elements ¢4, (where 8 denotes the world-state) and the constart veoton,

e = <1, ..., 1>. Consider forming an arbitrage portfolio, 7, of all the n assers

El

where ne = o, i.e.,the arbitrage portolio uses noc wealth. If n is large amd 1 135 wall

diversified, with obvious vector noctation, we have by the law of lzrge numbers that
nx = nE + (nB)& + ne

= nb + (nB)é)

——

(where approximation is in quadratic mean) and setting rf = o vields

Using no wealth, the random return nx has now been engineered to be eguivalent to a cer-
tain return, nE, and to prevent arbitarily large diseguilibrium positions we must
have nE = o. This can only cccur for all n such that ne = nf = o if E is spanned

by e and 8 or

Ei =p + ABi {

EEN



for constants pand A, Clearly 1f there iz a risklass asset p is itz rate of
return and, even if there isn't such an asset, p is the rate of return on all zero-
beta portfoliocs, o, i.e. portfolios with we = 1 and af = 0. Letting a be a portfolio

of particular interest, e.g. the market portfolic, o, with B = o F, (4) becomes

Condition (5) is the arbitrage theory equivalent of (1)} and if § is a
market factor  return then B; will approximate b;. The above appreach, however,
is substantially distinct from the usual mean-variance analysis and constitutes
a related but separate theory. Tor one thing, the argument suggests that {5)
holds not only in equilibrium situations, but in all but the most profound sort
of disequilibria. TFor another, the market portfolioc plays no special role.

There are, however, a number of weak points in the heuristic argument. Tt
is not clear, for example, that for any given n, the negation of (5) will be in-
appropriate since the Increase in risk aversion may offset the decline in risk of
ne. In addition, it is not a priori certain that the disequilibrium position of
one agent will not be offset by the disequilibrium position of ancthen.

In Ross [1971], however, it was shown that if (5) holds then it represents
an £ or quasi-equilibrium. The intent of this paper is to supply the rigorous
analysis underlying the stronger arguments above. We will begin, in Section T, by
using a special example to elucidate the impact of expectaticnal mechanisms and
the number of assets on wealth in a case where the arbitrage argument fails to holl.
In Section II we will present some weak sufficient conditions teo rule out such
pathological examples and will prove a general version of the arbitrage result.
A mathematical appendix contains some supportive results of a somewhat technical
and tangential nature. Section TIT will briefly summarize the paper and suggest

further generalizations,
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T. A Counterexample
Surprisingly, it is not always the case that adding assets increases wealth.
The impact upon wealth hinges on both the expectational schemes that agents are
assumed to use and on their preferences (although it is possible to state some
preference free results). However, if wealth changes then so may risk aversion and

the law of large numbers argument outlined above may fail. Considep the following

example.

suppose that there is a riskiless asset and that risky assets are Independently

and Normally distributed as

X; = B + ;i s (6)
whare

E{Ei} =0
and

E{Eiz} = 02

The arbitrage argument would imply that in equilibrium all of the independent risk

would disappear and, therefore,

Ei: D (7)

Assume, however, that the market consists of a single agent with a constant

absolute risk aversion utility function of the form
U(z) = - &78% | (8)

Letting a denote the portfolio and taking expectations we have

il SRR A e
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E{ulw(p + alx - pre]))

oo pemvalk - prely

H

2

g 2,
_ e—AwD{e-(AW)G(E - pre) + 2(Aw) {a a)} (%)

and the first-order conditions at a maximum are given by

g?(Aw)ai = E; - o. (10)

If there is no net supply of the riskless asset the budget constraint (Walras' Law

for the market) becomes

el
3o - 12 R CHERDIE (11)
Awa -

and solving for wealth ylelds

1
A02 *

.M:j

w =

1

Since o is the market portfolic, in equilibrium we must alsc have aj > o for all i
and, therefore, i - p > o for all i.

Notice that knowledge of the stocks of assets would enable us to determine
prices in a proportionate manner, but would give us no additicnal informaticn orn
expectations in this framework. Suppose, now, that E; alternates from p + 1 to
o+ 2 as i +=. Clearly the arbitrage condition (7) is violated (for any chcice
of p). From (12), wealth diverges with the increzse iIn n and the increase In waalih
increases the agent's relative risk aversion, Aw, as rapidly as the law of large
numbers diminishes the variance of the nolse terms. The two effects just cancel
out and there is no need for (7) to hold to prevent arbitrage.

In the next section we will develop assumptions sufficient to rule out this

pathology.
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II. The Arbitrage Theorv

The difficulty with the constant absclute risk aversion example arises hecause
the coefficlent of relative risk aversion increases with wealth. This suggests

considering risk averse agents for whom the coefficient of relative risk aversion

UH(X)X} <R<owo , (13)

(o 0%
W T -

i.e. agents with a uniformly bounded coefficient of relative risk aversion. We
will refer to such agents as being of Type B (for bounded).
Pratt has shown that given a Type B utility function there exists a monotone

increasing convex function, G(*), such that
U(x) = GLU(x; RIT , (14

wheve U(xy R) is the utility function with constant relative vrisk aversion, R.

It 1s well known that

Xl—R
TR if R£L1

U (x; R) = (15)

log x IfF R =1.

Easentially, then, Type B agents are uniformly less risk averse than some constant
relative risk averse agent.

Assume that the returns on the particular subset of assets under consideration
are subjectively viewed by agents in the market as being generated by a model of

+he form

17 Bf 4+ Bs1 81+ o+ Byt o£5

b
!

(18)

E; + B38 + g5 ,

"



where
E{ég{} = E{Ei]’ = 0

and, where the E:‘s are mutually stochastically uncorrelated., We will impose no
A
further restrictions on the form of the multivariate distribution of (8, ) beyond

the pequirement that (I o< =)
c? = E{E;z} < g2, {17)
i i

In particular, then, the éi need not be jointly independent or even independent
of the Ei's, they need not possess variances, and none of the random variables need
be normally distributed.

A point on notation is alsoc needed. TIn what follows a% will dencte an n-element
optimal portfolio for the agent under consideration and statements of the form a®E
are to be interpreted as statements applicable uniformly in n. The vector BR will
be the column vector <Bl£° caes Bn£>' and B;, as above, denctes the row vector

<Bs1, ...» Bik>. The single letter R will denote the matrix sl E cee ; gk 7,

Assumption 1 (Liability limitations) There exists at least one asset with limived

liability in the sense that there is some bound (per unit invested) to the lossas
for which an agent is liable.
Assumption 1 is satisfled in the real world by a wide variety of assets. e

can now prove a key result about Type B agents.

Theorem I Consider a Type B agent who lives in a world that satisfies Assumption &
and who believes that returns are generated by a model of the form of (18). If

(dm < =) such that

a b < m, {18)



then (3¢, v) such that

I[F; - p-8y1° <o . (19)

i=1 1

Proof The result is independent of the particular wealth sequence <w,> and we

must prove 1t for arbitrary sequences. Assume that R # 1.

From (18), concavity and monotonicity
E{ULwga®x]}

o
<
< U[wna E]

I A

Ulw,m]

1

‘n)l—R

GL(w U{m; R)].

Now consider forming an arbitrage portfolioc sequence that solves the associated

quadratic problem
min nv¥n ,

subject to

and

where V is the covariance matrix of <e£> and where t Is the maximum 1liability loss
assoclated with a unit investment in a limited liability asset. Assumption 1

puarantees that t is beounded.



If the constraints are unsolvable for all n, then E must be linearly dependent
on e and the columns of 8 and we are done. (This follows since for n > k + 1,

the system
m le s 8] =0

must have non-trivial solutions.) Suppose then, that the constraints are solvable

for all n sufficiently large and, without loss of generality, let

be of full rank. We will assume that if a sequence of random variables converges
to a degenerate law (a constant) in quadratic mean, then the expected utility also
converges. An examination of this point is deferred to an appendix. Tt follows

that there must not be any subsequence on which
i » o,
for then
E{U(nx; R)} = U(e; R) > Ulms R)
and, therefore, by convexity of G(*) there exists n such that

=elGM TR0k BIT3

E{Ulw, nx]}

LM RE(UC nk; RIIT

fv

1-K
> oL(w™)™ Ulm; RYT
violating optimality. Hence (da > o) such that (¥n)

ﬁVn_zka > 0
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Solving (19) we have
vn = X2

where X is a (k + 2) - vector of multipliers, and applying the constraints of (20)

yields
[x'v-1xia= [°1.
It now follows that
nvn = A'[S]
= [e, 01 [x'v T [

>a> o,

Ht

Defining b' {c, 0} we can apply Lemma T in +he appendix to obtain the existence

of a¥ and A <® such that for all n

(xa™)' (¥a®) <4 <= |

or

s 1/c .
a”, /

Multiplying a* by ¢ proves the result.
If R = 1, wealth can be factored out of the utility function additively and
the proof is nearly identical.

Q.E.D.
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Theorem I asserts that for a Type B individual, if the optimal expected return

is uniformly bounded, then it must be the case that the arbitrage condition

as|
4

1P +BiY

(21)

Pt Y Byt T Y8y,

holds in the approximate sense that the sum of squared deviations is uniformly

bounded. This implies, among other things, that as n increases

IED - p - Bnyf - o . (22)

A number of simple corollaries of Theorem I are available. It is easy to see,
for example, that i1f wealth is confined to a compact interval on which the utility
function is bounded, then Theorem I will hold for any risk averse agent. More

importantly, we have the following corollary.

Corollary T Under the conditions of Theorem I if there is a riskless asset then e

may be taken to be its rate of return.

Proof The return per unit of wealth in the presence of a riskless asset is given

by
p o+ o (% - p) ,

where o is now the portfolio of risky assets. Deleting the constraint +hat ne = o
we can simply repeat the proof of Theorem I with (E - pe) in the place of the E
vector.,

Q.E.D.



-J12-

To turn these results intc a capital market theory we will assume that there
is at least one Type B individual who doesn'+ become negligable as the number of

assets, n, 1s increased. The following definition is helpful,

Definition The agent, av, will be said to be asymptotically negligable if, as

the number of assets increases,

E!ISC

where w” is the agent's wealth and w is tctal wealth, i.e.,

v
oW
v

i

W

For example, an agent will not be asymptotically negligable if the sequence
of proportionate quantities of assets the agent is endowed with Is bounded away

from zero.

Assumption 2 (Won negligability of Type B agents) There exists at least one Type

B agent who believes that returns are generated by a model of the form of (16)
and who 1s not asymptotically negligable.

To permit us to aggregate to a market relation we will make three more assump-
tions; essentially we must insure that Theorem 2 will not be "undene" by the rest

of the economy. First we specify the generating model, (16}, a bit more.

Assumption 3 (Boundedness of expectations) The sequence, <E.> is uniformly bounded,

i.e.

el

syp fEiI <@, (23)

Assumption 3 will be discussed below.
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Assumption 4 (Extent of diseﬁuilibria) Tet & dencte the aggregate demand for
the ith asset as a fraction of total wealth. We will assume that only situations
with & > o are to be considered.

Notice that Assumption 4 does not rule out the possibility that an asse+ can
be in excess supply; it only implies that the economy as a whole will wish to
held some of it. Assumptions 3 and 4 can be weakened considerably as will be shown
below, but for purposes of demonstration we have chosen to leave them in a
stronger than necessary form.

Lastly, we need to assume that agents hold compatible subjective beliefs,

Assumption 5 (Homogeneity of expectations) All agents hold the same expectations,

E.

We can now prove our central result.

Theorem II Given Assumptions 1 through 5, (2, v)

oo

.Z' {El - p - Biy}Q <o (19)

i=1

. . . . . . L
Furthermore, i1f there is 3z riskless asset, then p Iis its rate of return,

Proof Trom Theovem I we know that if the conclusion is false then for the Type

B agent (on a subsequence)

O
zi a: By >, (2u)

Let the total fraction of wealth held by the Type B agent be given by w® and by
the rest of the economy by wl. If ui denoctes the fraction of wl held in asset 1

by the rest of the economy then (¥i) we must have

Lo oE,= 1,
i 1
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and by Assumption U4
g = wa®; + wlaly > o,
Thus,

el

| v

&E:

EJ:.- (w°a°i + mlali) Ei

1 1

E.

[} O.. .
W % o lEl + W % a”,E;

From (23) and Assumption 2 the first sum is divergent which together with Assumption

3 implies that

LulZ Oill Ei+—°°
i

Since

T T wavin:}
vo 1 1T

and for some agent, av,

VoV
E. >
% wa .Es °

on a subsequence. By Assumptions 1 and 5 this contradicts optimallty.
The identification of p with the riskless return follows from Corollary 1.

Q.E.D.
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As was shown in Ross [1972] the basic result of Theorem 2 can be written in
a number of empirically interesting and intuitively appealing formats. Tor example,

by appropriate normalization it can be shown that

E, - p * Bil(El - )+ ... 4 Bik(Ek -0, (25)

where ER is the return on =11 portfolios with aR® = o for s # £ and apd = 1. The
constant ¢ 1is now the returnm on all aR = 0, il.e., zero-beta pertfolios. Thus ,

the risk premium on an asset is the B-weighted sum of the factor »isk premiums,
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ITI. Generalizations and Coneclusions

One of the strengths of Theorem 2 is that i+ does not reguire the stringent
hemogeneity of anticipations of the mean-variznce theory. We are distinguishing,
now, between expectations, i.e., the E vector, and anticipations, the whole model
(16). 1If other agents have the same ex ante expectations, but believe returns are
generated in a different fashion, then (25) must still hold where 8 is the B of
the return generating model believed to hold by the Type B agent. OFf course, this
1s a bit gratuitous since in this model as in all others it is necessary to trans-
late the results into observable quantities and +the usual ex ante-ex post identity
becomes ambiguous with disparate anticipations. Even if all agents agree on (18),
however, there iIs still considerable scope for disagreement on the underlying
probability distributions. For example, if é, represents a market or "GNE" factor
then as long as all agents agree on the impact of this factor on returns, thrcugh
Bi1, they can hold a variety of views on the distribution of & without violat-
ing the basic arbitrage condition, (25). Similarly, agents can also disagree on
the distribution of the idiosyneratic noise terms, }i’ without altering (25). 1In
an important sense, if we are willing to accept the factor model of (16) then much
of the controversy over the exact distribution of returns iIs irrelevant for the
derivation of the capital market arbitrage condition.

The primary difficulty with the analysis arises when agents differ in their
expectations, E”. Now the procf of Theorem 2 must be modified since, unless all
EY vectors are positive multiples of the same vector, we cannot be assured that
the divergence of oET to - » fop # v, Implies that oVEY - -~ ». This is a
fruitful area for generalizations.

A number of other generalizations are also worth exploring. [Ior example,
it can be shown that the assumption of Independence among the factors and between

the factors and the noise tevms has further empirical implications (see Ross [1a72].
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An example of a condition that should be weakened is +he boundedness restriction

on variances. It seems likely that this can be accomplished without altering the

results, This would reinforce the distribution-free nature of the arguments.
Finally, 1t should be emphasized that (25) is indeed much more of an arbitrage

relation than an equilibrium condition and may be expected to be quite robust.

Assumptions 3 and 4 served only to guarantee that the market return,

F = 'zigiEi \ (26)

would be unifermly bounded and this will hold in a wide class of disequilibrium
situations. Rather then simply assuming that E, was bounded, we chose to make
Assumptions 3 and 4 directly to see how sufficient conditions for a bounded E, would
appear in alternative econcmic situations. TFor example, Assumption Y4 can be
weakened if instead of requining all & > o, we assumed that % | %[ was bounded,
i.e., we bounded the sum of the absolute proportions of wealth placed (or shorted)
in all assets. This would also be sufficient to bound the market return. Tn
practice, these are very weak conditions and easily satisfied,”

In conclusion, we have set forth a rigorous basis for the arbitrage relation
and arguments discussed in Ross [1972] (and [13711}, and in doing so we have axp lored
their precise underpinnings. The conditions which are sufficient to support the
theory are both intuitive and reascnable. On a less optimistic note, though, while
significantly weakening the assumption that investors have identical (or homogerneous)
anticipations, the arbitrage theory still requires essentially identical expectations
and agreement on the B coefficients if the identification of ex ante heliefs with
ex post realizations is to provide empirically fruitful results. IFf this assump-
tion is to be fundamentally weakened, this theory (and all others) will require

a closer examination of the dynamics by which ex ante beliefs are transformed inte
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ex post observations. Such a study properly lies in the domain of general disequi-

1ibrium dynamics and the study of the impact of information on markets, I+ is

one of the most difficult, important and exclting areas of future research.
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Appendix 1

Tn this appendix we prove the lemma referred to in the proofs of the paper.
Define z monotcne k-sequence of matrices, <xU>, to be the sequence of matrices
formed by taking the first row, the first two rows, and so on ofan infinite matrix

with k ceclumns.

Lemma I: Let <XP> be a monotone k-sequence of matrices and let <H> be a
sequence of diagonal matrices with diagonal elements <h,>, <hy, hp>, and so on

where, for some h,h; > h > o for all i. Assume @b, m) (VX" of full vank)
bt I ENM T s s o (A1)
Tt follows that (Ia” and m) (¥n such that X" is of full rank)
(xMa™y (Xna*)_j m< o

and

Proof: The result is trivial if X" is of less than full rank fer all n., In
addition, if X" is of full rank for some n (> k) then Xﬁ is of full rank, ﬁ > 1,
and we may assume that the sequence <> (n_: k) is of full rank for all n. By
positive definiteness Xn’Han is of full rank and (Al) holds.

Consider the problem:
min (xPz™)' wh (x|
subject to

AN S
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The solution is given by
o0 Y[Xn'Han]-lb :
where
y = Oz 1Pz

= (b [x?'Hxn]1p) -1

<£<ae R
- m
by (Al). Consequently, from the lower bound on <hi>
Oz (P2 cm =i cw
-} _ —hm
L
Letting y© = X"z implies that y" ¢ <m. IfX
X" then
2" =y %,

where ynlx is the corresponding subvector of y™, and

norm it has a convergent subsequence. Letting y“ be

Zn - ZH

Assume to

(XDZ:’:)' (anﬁ'\') s m .

we now cobtain

Iz a full rank submatrix of

since y'|X is bounded in the

its limit we must have

Xhly" on the subsequence. It remains to show that (¥n) (¥72™)' (x@z") < .

the contrary that for some 7 (and, therefore, all n > n)

. n % . .
However, since Z° -+ Z" on a subsequence this would imply

(xBzMyr (7R > (22 (x"z™) > m for some n.

Tt follows that (¥n) (X"z2")' (x"z%) < m,

we must also have Z*'b = 1.

1
In addition, since Z%" b = 1 for all =



Appendix 2

In this appendix we discuss the relationship between convergence in guadratic
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mean (q.m.) and expected utility. The technical results can be found in Loeve

and Billingsley.

We can begin with a simple but powerfull result.

Let <Xn> be a sequence of

random variables with E{%n} = o, and Rn + o (g.m), i.e. cztﬁn) + 0.

Proposition: If U(*} is concave and bounded below {which implies that the domain

of U(+) is left bounded), then

E{Ulp + X7} + UCp)

Proof: By Fatou's lemma
lim inf E{Ulp + &n}}_er(p) s
but by concavity
E{Ule + X, 1} < U(p)
0% 1im sup E{U[p + Rn]}Ai Ul p)
< lim inf B{ULp + ¥ 1}

=>  lim E{00p + X 1} = U(p)

The problem arises when U(*) is unbounded from below.

Q.E.D.

About the weakest

condition which assures convergence is uniform integrability (U.I.):
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%i@ Sgp QQ’U(O + Xn)!dnn =0
Q, = {|ulp+ X)) > ol
= EBlUCe+ X))} > U(po) .
A number of familiar conditions imply U.I.. 1If +he sequence U(p + %n) is

bounded below by an integrable functicn the Lebesque convergence theorem can

be invoked or if (38 > o)
sup E{|U(p + Xn)[1+5} <o,
n

then the sequence is U,T..

In general, then, the convergence criterion will depend on both the utility
function and the random variables. T+ is possible, however, to find weak sufficient
conditions on the random variables alone, by taking advantage of the structure of

~ ~

Xp» but the condition that X_ = é-ZE.; o ?
n

» unif . .
n 2 €1 3 uniformly bounded and €45 €

]
independent is not sufficient.6

In the text, it is assumed that all sequences satisfy the U.I. condition,

and therefore

X, *a {(q.m)

will imply that

E{U(%n)} > U(a)
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lSee Black for an analysis of the mean variance mocdel in the absence of a
riskless asset.

2See Blume and Triend for a recent example of some of the empirical difficul-
ties faced by the mean variance model. For a good review of the theoretical and
empirical literature on the mean variance model see Jensen.

3Green has considered this peint in a temporary equilibrium model. Essentially
he argues that 1f subjective anticipations differ tco much, then arbitrage possi-
bilities will threaten the existence of equilibrium.

LLTheorems I and IT and Corecllary I can be extended to the case where (16) holds
for only a subset of the assets by generalizing the utility functien to be a
Lebesque dominated sequence of functions conditional on the other assets.

5

A strong form of Theorem 2 can be obtained by assuming that the weighted sum
of subjectively viewed expected portfelio returns
v AURRY

Row koo By (r1)

is uniformly bounded. This would permit us to delete Assumptions 3, Y4 and aeven 5
and, formally at least, would allow heterogenecus expectations. Alternatively,
we could replace Assumption 3 with I[Ev|f <=, retain Assumption 4 (or the weaker
form described in Section IIT) and drop Assumption 5.

Furthermore, if agents agree on factors, if the actual ex post model generating
returns is some convex combination (say wealth weighted, or, for that matter, any
uniformly sup norm bounded linear operator) of the individual market ex ante models
then the basic arbitrage condition will be expressible in ex post observables and, as
such, will be directly testable. See Ross (1972) for a fuller discussion of these
issues. None of this, however, is very satisfactory. For one thing, it is not
clear what is the force of these boundedness conditions, particularly when the
number of agents is typically much larger than the number of marketed assets. As
an example, if we have two Type B agents with exactly divergent beliefs (in a sense
which can be made precise in special examples) then they can exactly offset each
other. There is now no reason to expect (rl), unlike (28), +o be bounded simply
because observed ex post return is bounded. TFor another, we must translate the
theory into a statement about observables and this requires velating divergent
subjective ex ante expectations to ex post cnes via the "right" gensrating mechanisn
in a less ad hoc fashion. This is the prcblem posed in Section IIT and makes the
"strong" version of Theorem II inadequate to stand alone.

61t is not difficult to construct counterexamples by having U(+) go to -«
rapidly enough as x approaches its lower bound {or - «=}.
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