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1. Summary

Kelly (1956) and others, e.g., Latané (1957) (1959),
Markowitz (1959, chapter 6) and Brieman (1960) (1961), have
asserted that in selecting among probability distributions
of return this period, the investor who continually reinvests
for the long run should maximize the expected value of the
logarithm of increase in wealth. Mossin (1968) and Samuelson
(1963) (1969), on the other hand, have presented examples of
games in which the investor reinvests continually for the
long run, has any of a wide range of apparently plausible
utility functions, yet definitely should not follow the
aforementioned "expected log" rule.

The argument of Kelly et al. is that, under the conditions

considered, the investor who follows the expected log rule is

This article owes much to Paul A. Samuelson and to my
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almost sure to have a greater wealth in the long run than an
investor who follows a distinctly different policy. We illus-
trate this argument in section 3. On the other hand, Mossin
and Samuelson argue that, for a wide range of plausible

utility functions, the expected utility of the game as a whole
provided by the expected log rule does not approach the ex-
pected utility provided by the optimum strategy, no matter

how long the game is played. This argument is also illustrated
in section 3.

Given my beliefs concerning expected utility, which remain
as in Markowitz (1959) chapters 10 through 13, if it were in
fact the case that the expected log rule did not provide asymp-
totically almost optimal expected utility for a wide range
of utility functions, then I would have to reject the expected
log rule as a general solution to the problem of reinvesting
for the long run. The conclusion of the present paper,
however, 1s that utility analysis does not refute the expected
log rule. Rather it confirms the rule, and provides a more
satisfactory theoretical justification for it than has been
available heretofore.

As discussed in section 4, for a given game with a fixed
length T, we can define the outcome of the game in terms of
either the ending wealth, Wn, or the rate of return, g,
achieved during the game. It makes no difference, for fixed
T, whether we express utility as a function U(WT) or as Vi{g).

But as T increases it is not equivalent to assume that U(WT)



remains the same for all T as to assume that V(g) remains

the same for all T. Mossin and Samuelson in effect assumed
that U(WT) remained the same for all 7. We argue that it is
a more plausible interpretation of "investment for the long

run® to assume that V(g) remains constant.

Theorem 1 of this paper shows that, under very geheral
conditions, if V(g) is continuous then the expected log rule
is asymptoticly optimal; whereas if V{(g) 1is discontinuous
then the expected log rule asymptotically provides an expected
utility that is within Ymax of the optimal expected utility,
where vM&X ig5 the largest jump in v{(g).

Comparing theorem 1 with the Mossin-Samuelson argument,
one might be tempted to conclude that the expected log rule is
asymptotically desirable if constant V(g) is assumed, but
generally not asymptotically desirable if constant U(WT) is
assumed. But theorems 2 and 3 show, under fairly general
conditions, that the expected log rule is asymptotically op-
timal even when constant U(WT) is assumed, provided that
U(WT) is bounded from above and below. TI.e., the expected
log rule is asymptotically optimal, under the conditions of
theorems 2 and 3, provided that U does not approach + =
as WT approaches «, and does not approach - = gs WT approaches
0. Essential to the Mossin-Samuelson result, then, was the
fact that every utility function, in the class considered by

them, was unbounded either from above or helow.



In section 14 we arque, along the lines of Menger (1934),
that given any U(WT) which is unbounded (either above or
below) a St. Petersburg type of game can be constructed which
shows that the particular unbounded U(WT) is absurd. From
this it is argued that U(WT) should be assumed to be bounded,
hence theorems 2 and 3 are applicable.

The argument in section 14 even rules out

U(WT) = log(WT)

as a reasonable utility function of final wealth. Thus a word
seems needed (section 15) as to how the exXpected log rule
can be asymptotically optimal for every bounded U(WT).

In short, this paper argues that:

it is much more plausible to analyze behavior
for the long run by assuming constant V{g) than
constant U(WT) as T increases. In this case

theorem 1 applies; but

even if constant U(WT) were assumed, 1t must be

bounded to avoid the absurd behavior shown in

section 14. 1In this case theorems 2 and 3 apply.
Theorems 1, 2 and 3 show general conditions under which the
expected log rule provides asymptotically optimum, or almost

asymptotically optimum expected utility.



It is not the position of Markowitz (1959), nor is it
the position of the present paper, that all investors should
invest for the long run. The risk averting investor may
prefer to sacrifice some return in the long run for some
additional stability in the short run. One value of the
results for the long run, nevertheless, is to help us narrow
the range of E,V efficient portfolios which need be considered
for final portfolio selection. This view of the usefulness

of the long run analysis is discussed in section 6.

2. Prerequisites

Since portfolic theory has become of interest to theorists
and practitioners with mathematical backgrounds ranging from
none to much, we should specify the mathematical background
assumed of the reader.

Sections 3 through 6 assume that the reader has had an
introduction to probability and portfolio theory equivalent
to the first six chapters of Markowitz (1959). The principal
prerequisite assumed here that is not discussed in these six
chapters is the use of the summation sign (X%). The latter
is discussed on pages 155-6 of Markowitz (1959) if the reader
is not already familiar with it.

Section 7 onward in this paper requires a greater famili-
arity with college mathematics, particularly analysis and
probability. The earlier sections, 3 through 6, are intended
to illustrate the discussion. The later sections are intended

to provide rigor and generality.



3. A Paradox

Rather than relating who said what when, we shall de-
scribe the controversy by analyzing a simple special case.

We first analyze the case in a manner which makes the ex-
pected log rule appear desirable; and then we analyze it in

& manner which makes the expected log rule appear undesirable,
Having thus illustrated the problem we show, for the simplified
case, how the theorems presented later in the paper resolve

the apparent paradox.

The present section makes assumptions, such as unchanging
probability distributions of returns over time, not made in
later sections. The purpose of the present section is to
illustrate the problem rather than seek generality.

Imagine a player who bets on a wheel such as that in
figure 1. The wheel is marked with two or more concentric
rings referred to as ring 1, ring 2, -++y ring N. The wheel
is also marked into M stopping points. Numbers, rij' written
on the wheel for each combination of ring i and stopping
point j, indicate the return per dollar bet on the i-th ring
if the wheel stops at the j-th stopping point. Thus if the
wheel stops as in figure 1 the return per dollar invested in
ring 1 is .05, the return per dollar invested in ring 2 is
.00, and the return per dollar invested in ring 3 is .10.

We will sometimes refer to the rings as securities, and
the rij as returns on securities. Cash, or a security with a
fixed return, is represented by a ring with the same r.. for

1]
all 5.



Wheel of Fortune Illustrating Simplified Game



The investor begins with an initial wealth Wy>0. He

chooses an allocation of resources Xl,Xz,...
N

5 Xi = 1. The wheel is spun, stops at jl and his wealth
i=1

then egquals

,XN such that

Il

=
[
+

-
Hv

where

N
r. = g X, r,. .
i=1 * 1]1

Here ry is the return in the first period on the portfolio as
a whole.

Throughout this paper we assume that the player bets his
entire accumulated wealth on each spin of the wheel. Thus
for the second spin the player bets W, = Wo(l + rl) in total.

In the present simplified case we will also assume that
both the wheel and the investor's proportions Xi remain the
same throughout the game. Thus the wheel is spun a second

time, stops at j2, and the investor's wealth becomes

N
W, =W, - & X, « (1 +r..)
2 ST 13,
= Wl - (1 + r2)
= WO - (1 + rl) - {1 + r2).



After T spins the player's wealth equals the product

= . . . o {1+
{3.1) WT WO (1 + rl) (1 + r2) (1 + r3) {1 rT)
where
N
r.= Xr,,, fort=1+4t T,
RO P R

jt being the stopping point of the wheel on the jth spin.
Or, using the roduct sign m --which is to multiplication as
£ 1is to summation--we may write (3.1) as
T
(3.1a) WT = WO . t:1(1 + rt).
In the present simplified case we will assume that the

portfolio choosen must have

X, 20 for i =1 to N

and that the wheel is such that

rij > -1 for all i,j.

It follows that the investor cannot be completely wiped
out in a single spin of the wheel.

Now let us consider whether the investor would be better

advised to select portfolio (a) with proportions
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or portfelio (b) with proportions

b b b b
1 AR XN.

The wealth, W provided by portfolio (a) after T spins

a
Tl’
will be larger than the wealth, Wg, provided by portfolio (b),

if and only if
a b
wT/wO > WT/WO
therefore if and only if
log W2/W_) > log(Wl/w.)
9 /My 9 Mp/ Mg
and therefore if and only if
b
(1/T)log (WE/Wg) > (1/T) log (Wp/Wg) .

Equation (3.1), and the basic property of logarithms that

T
log( = (1 + ry)) =
t=1 t

Il B4 3

+
llog(l r.),

imply that for any portfolio

T
(1/1) 1og (W /W ) = (l/T)tEllog(l +r )

hence the expected value of (l/T)log(WT/WO) is
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T
(L/T)-E log(WTﬂﬂ)) = (1/T) -E{ tzl log(l + rt)}
T
= (1/T) til E log(l + ry).

But since, for a given player, r, has the same probability
distribution as r2, which has the same probability distribution

as L etc., we may write

(3.2) (1/T)-E log(WT/WO) = E leg{(l + r).

This is unchanged as T increases.

Since the spins of the wheel are independent, the variance

of (l/T)log(WT/Wb) equals
T

(3.3)  (1/T%).var { 1 log(l + r.)} = (1/T).Var(log(l + 1)).
t=1

This approaches 0 ag T approaches =,

Therefore as T increases, the expected value of (1/T)lOg(WT/Wb)
remains constant while its variance approaches 0. It follows
that if E log(l + r) is larger for portfolio (a) than portfolio
{b), then as T»» the investor who always reinvests in the former
is "almost sure" to do better than the investor who always

reinvests in the latter. To be precise:

suppose that p is some probability less than 1.0

(e.g., p = .999999), Suppose that a player investing

in portfolio (a) would like to be this sure that he will
beat a player investing in portfolio (b). He can be

this sure by choosing T large enough; since 3.2 and 3.3



12

1
and the Tchebychev irequality = imply that there exists
a T* such that for a game of length T* or longer the
probability is at least p that player (a) will beat

player (b).

The player who chooses the portfolio with greater E log(l + r)
can be as sure as he pleases (short of absolute certainty) that
he will do better than a player who chooses a portfolio with
lesser E log(l + r). He only has to insist that T be large
enough.

It would seem then that, in this simple case at least, the
way to invest for the long run is to maximize E log(l + r),
i.e., to follow the expected log rule. But let us analyze the
same game from another point of view.

Suppose that the investor is to play for a fixed number of
periods, T, and then "cash in" his final portfolio wealth WT.
Let us alsoc suppose, with Mossin and Samuelson, that the in-

vestor has a utility function of the form

U=u (WT)a

chhebychev‘s inequality says that the probability that a
random variable will deviate from its expected value by more than
k times its standard deviation is never greater than l/k2. There-
fore as variance and standard deviation approach g the probability
of a given size deviation approaches (. For example, let d be
the difference between the E log (1 + r) provided by portfolio
(a) and that provided by portfolic (b) in the text above. By
hypothesis, d is greater than 0 and does not depend on T. The
probability that the actual value of (l/T)log(WT/WO) provided by
portfolio (a) will deviate from its expected value by as much as
one-half d, or that the actual (l/T)log(Wt/Wb) provided by port-
folio (b) will deviate from its expected value by as much as one-
half d, approaches 0 as their two variances approach 0.
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for some o # (. For eXample, perhaps his utility function

5 -1 . .
equals % (Wp)? or -%{Wp) “. Any such function says utility
increases with wealth. For functions with @ < 1 the rate of

increase decreases as wealth increases. The investor's utility

at the end of the T periods is

o
U=oaq (WT)
o T o
= o Wb {tgl (1 + rT)}
T
B o o
= awb tgl (1 + rt)

Since the spins of the wheel are independent, the expected

utility associated with reinvesting in a givenportfolio is

T
(44 [
= E {gqw -
EU {a 0 £a1 (1 + rt) ¥
iy
= oWy T E(L + r )%

- awg {E(1 + r)%T.

This is maximized by choosing the portfolioc with greatest
E(1 + r)% As a rule this will not be the portfolio which
maximizes E log(l + r).

Suppose portfolio (a) maximizes E log(l + r) while port-
folio (b) maximizes E(1 + r)® for the investor's particular o
Suppose that the value of E{(1L + )% for portfolio (b) is k times
as great as that provided by portfolio (a), where k > 1. The
ratio between expected utility from portfolio (a) and that from
(b} for the game as a whole is kT. as Twoo, kT, Hence as T
increases, the superiority of portfolio (b) over portfolio (a)

increases without limit.
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According to our previous argument, for sufficiently large
T portfolio (a) is almost sure to beat portfolic (b). 1In
fact, for any p < 1 there is a T* such that for T 2 T* the
probability that (a) beats (b) is at least p- Yet, when
U=a (WT)Ot the ratio of the expected utility provided by (b)

to that provided by (a) can increase without bounds as T in-

creases.

4. The Catch

The theorems presented later in this paper address them-
selves to the apparent paradox illustrated in the preceding
section. The theorems are proved under substantially more
general assumptions than those of our previous discussion. For
the time being, however, we will continue the simplified
analysis, stating here without proof the implications of the
theorems for the present special case, and how this reveals
"the catch" in the apparent paradox. We begin by presenting
some basic notions used in the theorems.

The theorems consider sequences of games GTl'GTz'GT3""
The first game in the sequence may have Ty = 100; i.e., it is
to be played for 100 periods. The next game in the seguence
may have T, = 101 or T, = 200, or any other number greater than

100; and in general

for j = 1,2,3,... . A special case of such a seqguence would be,

for example
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GlOO' GZOO' G300’

where G300 is a game consisting of 300 spins of the same wheel
such as described in the preceding section.

As in the Mossin-Samuelson analysis we shall assume that,
in some sense, the same utility function is used in each game
in the sequence. We shall consider sequences of games, however,
in which the utility function is assumed to stay the same in

one of two different senses.

We may define the rate of growth g as

1/T

It follows immediate;y that
Wp = Wy - (1 + g)T.

Thus if the investor had put all of his wealth in a savings
account that paid (g) per period he would have ended the game
with the same terminal wealth.

For a fixed T we can express utility equivalently as a
function of Wp or as a function of g. E. g., if

U = U(WT)

then

c
]

U(Wg + (1 + 97 = vig)

by definition of V{(g). Either U or V can be used equivalently
to evaluate a probability distribution of Wp or the implied

probability distribution of q.
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Any one game, then, may be described eguivalently with a
U(WT) function or a V{(g) function. On the other hand, we have
a different sequence of utility functions associated with
GTl, GT2' GTB' «v. if we assume U(WT) is the same for all

games G or assume V{g) is the same for all GT.

T

If we think of a period as some fixed interval of time,
such as a month, then the assumption that U(WT) is constant
among games assumes, for example, that the investor has the
same rankings among probability distributions involving terminal
wealth = §500,000 vs. $1,000,000 vs, $2,000,000 whether the
game is for 100 months, 200 months or 500 months. The assump-
tion that V(g) remains the same, on the other hand, asserts
that the investor has the same preference rankings among
probability distributions of say a %%, 1% or 1%% rate of return
per month for the game as a whole whether the game is for 100
months, 200 months or 500 months.

While results are presented below for both constant
U(Wp) and for constant V(g), it seems to me that assuming a
constant V(g) 1is the more plausible interpretation of "investing
for the long run”. Suppose that the management company of a
mutual fund, or the trustee organization of a large private
estate, takes as its goal "return" or "increase in wealth" over
the long run. Suppose indeed that they are not willing to give
up anything in the long run for a second goal of reducing short
run fluctuations in wealth. 1In this case it seems toc me more
plausible that their utility function is expressible in terms of

a 3% vs. a 6% vs. a 9% rate of return per annum over an
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indefinitely long period of time, rather than in terms of a
40 fold increase in wealth vs. a 60 fold increase in wealth
Vs. an 80 fold increase in wealth over an indefinitely long
period of time.

Let G

Ty’ G

G be a sequence of alternate possible

Ty! VT4’
games in which the same wheel is spun respectively T, times,
T, times, T, times, etc. Theorem 1 implies that if V(g) is
the same for all games in the sequence, if utility does not

decrease when g increases, and if rij > -1 for all i,j then:

if v(g) is continuous, the expected value of vVig)
provided by the expected log rule approaches the

maximum obtainable expected V(g) as T-+w,

If V(g}) is not continuous, then the expected

value of V(g) provided by the expected log rule is
within e + y™@* of the maximum obtainable expected
V(g), where yMa8X ig the largest jump in the V(g)

function, and e+ as T-w.

In other words, the expected log rule provides asymptotically
optimal expected utility if V(g) is continuous, and at least
asymptotically "nearly" optimal expected utility if v(g) has
only "small" jumps. This result is true even if the "maximum
obtainable expected V(g)" is that provided by a strategy which
allows the choice of portfolios to change from period to
period.

Contrasting the results just guoted with those for the

Mossin-Samuelson U(Wp) function, one might conjecture that the

exXpected log rule does well for constant V(g) and poorly for
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constant U(WT). Theorems 2 and 3, on the contrary, show that

under certain conditions the expected log rule is also asymptotically
optimal if U(WT) is bounded both from above and from below. Speci-
fically, in the simple case of unchanging probabilities if U does

not decrease with an increase in W if U is bounded from above

T
and below, if rij > =1 for all i,j and if the maximum obtainable
E log(l + r) is not equal to 0, then the expected value of U(WT)
provided by the expected log rule is within & of that provided
by the optimum strategy =-- where ¢ approaches 0 as T increases.
Thus the persistent difference between the expected utility
provided by the expected log rule and that of the optimum strategy
in the Mossin-Samuelson analysis is due to the fact that (WT) is
unbounded above if & > (0, and unbounded below if a < 0.

The guestion of bounded versus unbounded utility functions
is not original to the analysis of the asymptotic optimality of

the expected log rule. Section 14 argues that only a madman

would act according to an unbounded U(WT) in any game G-

5. An Example

Before we proceed to the general discussion, let us
illustrate our introductory remarks with a numerical example.

Suppose, for this example, that a "wheel" has two out-
comes: heads and tails. Suppose further for this example that
only two choices are allowed the game player: He can either:
(a) always receive a one percent increase; or (b) have a 75

percent increase in case of heads, and a 50 percent decrease in
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the case of tails. Alternative (a) provides r = .01 with cer-
tainty; alternative (b) provides a 50-50 chance of r = -.5 or

r = +.75. In the present example let us require that the player
either always bet all of his wealth on (a), or always bet all of
his wealth on (b).

Consider the choice of (a) or (b) by three investors. The
first investor wants to maximize the expected value of terminal
wealth WT' This is actually the special case of maximizing the
expected value of Ot(WT)OL in which o« = 1. We will refer to this
player as the Mossin (o = 1) Player. The second investor wants

to maximize the expected value of the square root of W He is

e
i
a Mossin (a = %) Player, since the utility functions (WT)2 and

L . : . . . .
L(Wh) @ are equivalent in their choices among alternative strategies.

)
The third player follows the expected log rule. We call him our
Kelly Player.

As seen in section 3, in the present game the Mossin
(o = 1) Player will pick the bet with the highest expected value
of (1 + r). This will be the same bet that maximizes expected

r. ©Since alternative (b) provides an expected return of

3(-.5) + %(.75) = .125
while alternative (a) provides an expected value of
5(.01) + %(.01) = .01

the Mossin (o = 1) Player will prefer (b).
Section 3 also implies that the Mossin (o = %) Player will,

in the present game, choose the alternative which maximizes the
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expected value of (1 + r)™? on a single spin (or flip}. For
alternative (a) this is
b b
L{(1.01)y° + %(1.01})° = 1.005
1
For (b) the expected value of (1 + r)” is
L 1
L(.5)7% 4+ L(1.75°= 1.015

Thus he too, in this particular example, will prefer (b).

The Kelly Player chooses the larger of

1l

51ogy,(1.01) + Jlogy,(1.01) = .0043

versus

510gyo(-5) + klog,y(1.75) .1505 + .1215

= -.0190

and selects (a) instead.

After, e.g., 2,000 flips of the coin the Kelly Player will
have increased his wealth by a factor of (1.01)2000 or over
400 million-fold. The fate of the two Mossin Players depends
on the number of heads in the 2000 flips. If perchance there

were exactly 1000 heads and 1000 tails, the ratio of their

ending wealth to starting wealth would equal

(.5)1000. (1,75)1000 = ( 4751000

= ,000 000 000 000 000 000 000
000 000 000 000 000 000 000
000 000 000 000 0O1.
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There is a 50-50 chance that the Mossin Players will do
worse than this. If instead of T = 2000 we choose a larger
value of T the story would be the same -- only more so.

It would seem that alternative (b} is a miserable way to
bet for the long run. vYet it does maximize expected Wpo If
you added the probability of 2000 straight heads times (1.75)2000
plus the probability of 1999 heads out of 2000 times
(.5)-(1.75)1999 plus the sum of each other possible outcome
times its probability you would find that the "expected value"
of W,y5pp Provided by (b) was'WO-(l.l25)2000 as compared to the
mere WO-(l.Ol)2000 provided by (a).

This implies that if you would rather have your money ride
on (a) than (b), vour criteria cannot be to maximize the
exXxpected value of Wp; nor can it be to maximize the expected
value of vWp. You may still act according to the expected
utility maxim. But neither U = Wp nor U = /WE is your utility
function.

We have argued that since T is of indefinite size in this
discussion, utility should be expressed in terms of the rate of
return g rather than terminal wealth WT. It can be shown, as a
corrollary of the discussion in section 11, that for large T
alternative (a) provides a larger value of expected V(g} than
does (b} in this example for any continuous everywhere increasing
V{g), even for V(g) = ag® (w# 0).

The main result of this paper is theorem 1. It is not the
purpose of theorem 1 to compare the expected log rule with the

rule which always maximizes expected o (1l + rt)a each period,
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Rather the purpose of theorem 1 is to compare the expected log
rule with whatever strategy maximizes expected V{(g) for a
given game GT as a whole. The latter, precisely optimal,
Strategy may involve varying the portfolioc from period to
period even if the same wheel is spun each time. The finding
of optimal strategies for realistically complex games may be
beyond the optimization capabilities of our largest computers,
Yet, according to theorem 1, for sufficiently large T the
precisely optimum strategy can do very little better than the

simple expected log rule.

6. The Moral

We conclude from theorem 1 that if you were interested
only in reinvesting for the long run, in the manner assumed
here, you need not bother to solve for an optimum strategy.
Such an optimum solution would require you to estimate your
actual V(g) function; estimate how future distributions of re-
turns depend on time and preceding events; and perhaps may
require untold calculations to determine. Instead just follow
the expected log rule. For sufficiently large T there will be
virtually no difference in the expected utility provided for
the game as a whole.

Under conditions explored elsewhere [Markowitz (1959,
pp. 121 - 125), and Young and Trent (1969)] the policy of
maximizing expected logarithm for the current period may itself
be approximated by a portfolio selected from the set of E,V

efficient portfolios. 1In this case both the estimation problem
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and the computation problem are reduced to guite reasonable
proportions, especially if some simplified model of covariance
[as in Sharpe (1963), Cohen and Pogue (1967), or

Markowitz (1959, pp. 96 - 101)] may be assumed.

Note that the advice to maximize E log{(l + r) applies to
the portfolio as a whole rather than to some subset of the
portfolio. Suppose, for example, that an analyst is asked to
advise whether an investor who plans to continually reinvest
for the long run should buy the common stock, the preferred
stock, or some of each, of a given corporation. Unless it was
in fact the investor's entire portfolio, it would not as a rule
be even approximately correct to choose the combination of
common and preferred which maximizes E log(l + r).

To see the error of trying to maximize E log(l + r) for
the portfolio as a whole by maximizing it for components of
the portfolio, consider again securities (a) and (b) of the
preceding section. We saw that security (a}, providing r = .01
with certainty, had a greater E log(l + r) than security (b)
with a 50 - 50 chance of r = -.50 or +.75. But if a suffi-
ciently large number of securities like (b) were available, and
if their returns were uncorrelated, then a portfolio consisting
of many such securities would provide r = .125 with near
certainty, and would have a higher E log{(l + r) than a portfolio
consisting of (a) only. Many securities with a lessor
E log(l + r) thus may (or may not) combine to provide a greater
E log(l + r) for the portfolio as a whole. We should make the

individual decisions for their effect on the portfolio as a

whole.,
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Theorem 1 is relevant to the user of E,V efficient set
analysis, even if he is not dedicated exclusively to investment
for the long run. Suppose that a portfolio analyst has com-
puted an E,V efficient set for an investor or investment
Mmanager, and is about to graph the probability distribution of
returns for several possibly desirable efficient portfolios.

In accord with Baumol's (1963) observations, the analyst would
presumably not draw plots for any efficient portfolio with
Standard deviation ¢ below the point with maximum E - ko, for

k equal to about 2 or 3. Below some such point, efficient
portfolios may be viewed as less variable but not safer.
Similarly, the analyst would presumably not draw plots for
efficient portfolios with E and 0 greater than one with approxi-
mately maximum E log(l + r); for efficient portfolios with
greater E and ¢ are more variable in the short run without
presumablyl providing additional return in the long run.

Thus the analyst may reasonably discard from further atten-
tion efficient portfolios below a "Baumol point" and above a

"Relly-Latané point".

We say "presumably” since (1) the asymptotic optimality of
the expected log rule is shown here under certain simplified
assumptions, such as no costs of transactions, as discussed in
section 8; and (2) while Trent and Young show that the historical
average log(l + r) of various portfolios is closely approximated
by formulae depending only on historical E and V, nevertheless
E,V approximations can be quite inaccurate in the case of highly
speculative portfolios. TFor example, if a game rlayer were
allowed to borrow and bet to such an extent that r < =-1.0 could
occur, then E log(l + r) would equal - = while the various Trent
and Young approximations might even be positive. Hopefully,
future research will provide broader guidelines as to when E,V
approximations may be trusted than the guidelines of Markowitz
(1959) pages 121-2.
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7. The Game GT

We now present our general model. We consider a game G
played for T periods. At the beginning of each period, t, the

player chooses portfolic proportions

X1er Xoer X3gs ---r Xyg
N
such that 'Zl Xit+ = 1. This choice may depend on the history
1=

which precedes period t. We now may imagine that the return per
dollar invested is generated by the spin of a wheel as in
figure 2. The wheel in figure 2 differs from that in figure 1

in that:

it has a "wheel number”, and

each stopping point on the wheel indicates the wheel

number of the wheel to be gpun next.

Thus if the current wheel stops as in figure 2, the returns per
dollar bet on rings 1, 2 and 3 respectively are .05, .00 and .10
and the wheel to be spun for the next period is 381. 1In this
manner both the returns this period and the opportunities of
subsequent periods are generated by the spin of the wheel. The
nunber of stopping points and securities may vary from wheel to
wheel.
In our earlier simplified analysis we assumed that the

wheel had a finite number of stopping points. The variety of
objects (giraffes, oceans, skyscrapers) fashioned by nature and

man from the finite number of atoms of the earth, suggests that



Wheel of Fortune Illustrating General Game
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the assumption is not a practical limitation. It is worth
noting, however, that the theorems and their proofs apply if
there are either a finite or a countably infinite number of
stopping points on any wheel.

In the simplified analysis the player chose a portfolio

from the constraint set described by

X. » 0, for all i

i
(in addition to % Xi = 1). The three theorems allow the
portfolio (Xlt'th""'XNt) to be selected from a constraint set

S such that:
S is not empty;

S may depend on the current wheel but not on the prior

choice of portfolio;

z X,, =1 for all (X

it .,XN) e 5.

l,Xz,..

Later we present an additional restriction on the rij and
the set S associated with any wheel in any Gp. We will not
assume there, however, as we have not assumed here, that S is
necessarily (for example) closed, or convex, or that E log(l + r)
necessarily achieves a maximum in S.

A strategy s is a rule specifying:

initial proportions invested, chosen from the set S

of the first wheel; and

proportions to be invested at time t as a function

of the history to date:
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Xit = Xit(jl'jz"“'jt—l)

where the portfolio (Xlt,...,XNt) is contained 1in
the set S associated with the wheel to be spun at

time t.

For a given game Gn and a given strategy s, the history of
a particular play 1s given by the sequence of stopping points.
The stopping point of the first spin Jjj implies: the returns
rijl; the return r,; on the portfolio as a whole associated with
strategy s; the next wheel to be spun; and the portfolio to be
selected for the next spin according to strategy s. The pair of
stopping points (jl,jz) implies in addition: the returns rjq,;
the portfolio return r, associated with s; the third wheel to
be spun, and so On.

There are a finite or countably infinite number of possible
sequences of stopping points, or "histories”, (jlfj2'j3""jT)‘
In principle we can assign numbers 1, 2, 3, .-. to each possible
history. This assignment may be made completely arbitrarily as
long as each possible sequence is assigned a number.

Thus the history of a particular play of the game G, may be
represented by a single positive integer, hg. The structure of
a game, as described in terms of wheels, implies a probability
for each hqg. The returns in each period rl,rz,...rT obtained
from following a given strategy s in a play of Gp is also implied
by the integer hq.

For each time period t there are a finite or countably

infinite number of possible "partial histories™ (jl'jz""'jt)'
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Each such partial history can, in principle, be assigned a
number ht. The assignment of an integer to each possible
partial history at time t may be made arbitrarily -- without
regard to the numbers assigned to the partial histories at
time t', or to the numbers assigned to the total histories.

Any history hT implies T-1 partial histories:

hy,hy hg,eue,hg ;.

Any partial history has a conditional probability distribution

of the total history,

prob(h;, | hy)

or for any later partial history

prob(hg . | hy)

for T z t' > t. By convention we will let hg = 1 be the "partial
history" before the game begins. Thus prob(ht | hg) = prob(hy).
While there are a finite or countably infinite number of
possible histories, there may be a continuum of possible strategies.
This will cause us no difficulty since we will be either exam-

ining the properties of one strategy or comparing two of them.

8. The Sequence of Games

We postulate a sequence of games Gp for T = Tp, Ty, To,
where Tl < T, < T3 ... . It may or may not be true that the

first Tl periods of GT2 are "like" the game G The sequence

i
of games GTl’ GT2' -+.. can be quite loosely related.
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For example, the game GTl may consist of 100 spins of a
single wheel, call it wheel 1. The game GT2 may consist of 200
spins of a different wheel, wheel 2. The game GT3 may consist
of 300 spins of wheel 1 again; GT4 may consist of 400 spins of
wheel 2 again; etc. We have already noted that the game GTi+1
is longer than the game GTi' and that they both have the same
utility function either in the sense of V(g) or UWp). An
additional major assumption concerning the sequence of games is

presented later in this section.

We shall be concerned with two sequences of strategies:

k k k

sTl, st, ST3' ... being one sequence of strategies and
m m m . k m
STl' st, ST3, ... being the other. STl and sTl are two out of

perhaps countless ways of playing the game GTl; s%z and sg are
2

two ways of playing G, i etc. The relationship we assume
2

between s%_ and 3?. is that s%j always selects an allocation
] J

with at least as high an E log(l + r) as supplied by sgj. In
other words for every ganme GT' and for every partial history

ht—l where 1 ¢ t ¢ T we assume that the

E {log(l + h

DR R

provided by s? is as least as great as that provided by s?. On
the other hand s$ may provide greater EV(g) or EU(WT). The
theorems analyze the extent to which the expected utility pro-
vided by s$ can exceed that provided by s¥ ag T,

A basic assumption used in the proofs of the theorems is

the following:
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There exist ri°¥ 5 - 1 ang hi such that for all
games GT in the sequence GTl’GT2'GT3’ ««. , and

for either strategy s¥ or s% we always have

ow :
ri MRS rhi,

For example, if riOW = 1078 gpg P - 149 then our

assumption says that (by law or by investment practice) the

returns and constraints in all the games GTl' G

T2' T3'

are such that
the investor cannot be wiped out in a single spin
of the wheel; in fact he must retain at least one
penny per million dollars bet on any one spin of
the wheel; and he cannot win more than $1,000,000,000

per dollar bet on a single spin.

While r1°% ang rP are lower and upper bounds on r,
they are not necessarily the greatest lower bound or least

upper bound. Thus for either s% or s or both, and for any

T
or all of the games GTl, GT2, ... We may have r, always "much
greater" than rlow,or r, "much less" than i

Another way of stating this basic assumption used in
proving the theorems is that log(l + r) is bounded from above
and below for both of the strategies analyzed.

In addition to the explicit assumptions of the analysis,
there are the implicit assumptions suggested by asking, for

example, what kind of game would have

W, = WO- m {1l + r

T t)
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or would permit

E {log(l + re) | h, 41

to always be greater for one strategy, s?, than for another,

==

Sp- A partial list of answers include:

commissions and other costs of transactions are ignored
(hence for semi-"realism" the period should not be
thought of as "too short"; but the investment

decision can only be made once per period, hence the

period should not be thought of as "too long");

there is no "round lot" consideration since the
dollar amount invested, Wt—l.Xit' may be very small:

(the limitations in S are on the proportions X,

i+ not

on the amounts Wt~1'xit);

and so on. The world we are analyzing is clearly an abstrac-
tion; hence part of the need for some disclairmer, as in the
footnote at the end of section 6, concerning the precise

interpretation of the Kelly-Latané point in the EV efficient

set,

9. The Theorems

The three theorems are presented here and proved in the
following sections. The first theorem deals with the case in
which utility is a function of g.

Theorem 1: if V(g) is a monitonically increasing function:

G is a sequence of games as described in the last two

LG ..
T17 7T,



sections; and s% and s? are strategies associated with game

GT such that
E {log(l + r

h }

¢ | heg

is always at least as great for s% as for s% then there exists

a T* such that for all T > T* the expected value of v (g)

m

provided by S is at most ¢ + Ymax

greater than that provided

by Si, where Ymax is the largest jump of V(g), and £+0 as

Treo

Our assumptions concerning the constraint sets are too
general for us to conclude that for every game GT there exists

a strategy which always maximizes

E {log(l + r,) | h, .}

t-1

and a strategy which maximizes EV(g) or EU(WT). In such cases
as these strategies do exist, however, we may let s% be the

strategy which always maximizes
E {log(l + ry) | heoq?
and let s% be the strategy which maximizes EV(g) or EU (W

T
In this case we may think of s% as the Kelly—Latané strategy

).

and s? as the maximizing strategy for the game Gp. If

V(g) is continuous then s% is asymptotically optimal since the

maximum advantage of s? over s% approaches 0 as T approaches =,

In theorems 2 and 3 we consider utility to be a bounded

function U(WT). We do not derive results for this case in

general, but for certain subclasses depending on



34

T
=k _
Ly = (1/T) tzl E {log(l + r.) | h_,}
as provided by the strategy s%.

Theorem 2: If, for a sequence of games as described in

the preceding section, we have
prob {££ > & > 0} +1 as T =

then the expected value U(WT) provided by s% approaches Uhi,
the least upper bound of U(WT).

The assumption of theorem 2 is met if there is a riskless
security whose yield, while perhaps varying with time, is
always at least 8> 0, where o = log(l + B).

Theorem 3: If, for a sequence of games as described in

the preceding section, we have

-k
prob {LT £a <0} »1 ags T +

then the expected utility provided by either S% or s?
approaches Ulow’ the greatest lower bound of U(WT) for WT > 0,

Under either the assumption in theorem 2 or that in theorem

m

3 the expected value of U(W._) provided by S

i cannct exceed

that provided by s¥ by more than € , where € + 0 as T -,
This result for U(WT)is not true for assumptions as general as

those for V(g) in theorem 1, as shown by a counter-example

in section 13.
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10. Properties of Vv(g) and U(WT)

Sections 10 and 11 establish some properties needed to

prove the three theorems.

Since r1° ¢ g < rPl, the expected utility of any strategy

is unchanged if we replace V(g) by a function which egquals

low ¢ g ¢ P, equals V(r

egquals V(rhl) for g > rhi. Thus we may assume that V(g) in

low) low

V(g} for r for g < r and

theorem 1, like U(WT) in theorems 2 and 3, is bounded. Since

= plow

WT > 0 in any game GT’ we may arbitrarily let U(WT)
for WT < 0 without changing the expected utility of any
strategy. U(WT) thus extended, like V{(g) as Jjust defined, 1is

a bounded, monitonicly increasing function
y = £(x)

defined for - « < x<+ «, In the present section we review
some general properties of any such function.
Texts on mathematical statistics analyze the bounded,

monotonic function

y = P(x)

the probability that a random variable is less

than or equal to x.

They show that P (x) may be expressed as the sum of a
continuous function and a step function, where the step function
has at most a countable number of jumps. Either, but not both,

functions may be identically zero. The difference between
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P(x) and the general bounded, monotonically increasing function

f(x), is that:

P(x) has 0 ang 1 specifically as its greatest lower
bound (GLB) and its least upper bound (LUB)}; while
f(x) may have any two numbers ylow~6 yhi as its

GLB and LUB; and

P(x) is continuous from the right, while f(x) may
be continuous from the right, from the left or

neither at any point of discontinuity.

A slight modification of the argument which establishes the
character of P(x) shows that any bounded monotonically increas-
ing f(x) has the following properties:

f(x) =C{x) + % Y{d;) + @ (x)

diED

di< X
where C is a bounded, continuous, monotonically increasing
function ({perhaps identically zero): D is an empty, finite or

countably infinite set of real values X = di;

Y(di) > 0 for
each di € Dy 6(x) = 0 for x not in D and 0 < 8 (x) ¢ Y (x)
for x = di € D. f£(x) is continuous from the left, from the
right or neither at a point x = di, depending on whether 0 = 0,
O = «v(x) or neither at the point. Since C(x) is continuous,
bounded and monotonic, i1t ig uniformly continuousl; i.e., for

any € > 0 there exists § > 0 such that if 0 ¢ Xy = X < )

‘ lyniform continuity may be shown as follows: TLet Xy < Xy
be such that
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then f(xz) - f(xl) < E.

Since Y (d;) > 0 for d; £ D and I ¥ (d;) < yhi - ylow’
the sum of any subset of the y(di) is absolutely convergent.
If D is not empty, dl’d2’d3"" is an arbitrarily chosen
sequence of all of the values of x at which f is discontinuous.
Given any number vy >0 there are at most a finite number of d;

with a larger value of y(di); €.9., only a finite number of di

have Y(di) > Y(dl)- Otherwise the sum of the Y(di) would not
be finite. Hence there exists a d; with maximum y(d;). We
write y™@% £or this maximum Y(di).

The following property of f(x) is particularly useful in

the subsequent discussion:

Lemma 1 For every € > 0 there is a & > 0 such that if

max

N

X9 - %X, & & then 0 g f(x?) - f(x

1 ) & € + vy

1
Proof The uniform continuity of the monotonically in-

creasing, continuous function C (X) implies that there is a

{(con't)
£(x) - Ylow < e

for x < x and

-a'
y'o - f(x) < ¢

for x > Xy where ylow and yhl are the GLB and LUB of f(x).

Let Xp = x5 - 1; let xp = Xy + 1. Within the interval

Xpa <« X g xp, £(x) is uniformly continuous because it is here

continuous on a closed interval. Hence for any € > 0 there is a

§° > 0 such that 0 ¢ f(x }) - £(x7) € & provided 0 € X~ - X, < &
2 1 L o2 1

and Xa € ¥X] § X, € xp. Let 8§ equal the minimum of &° “or 17

-

For 0€ x9 - x; & 8§ , if xq < Xp then x5, § %7 + 6 < X5; hence

0< flxy) - £(x1) ¢ (ylow  e) = ylow =%, whereas if X2 2 Xp
then x; » Xy = 2 Xp and 0 f(x,) - fx)) < yhl - (yh -€) = €,
Thus the same & "worﬁs" throughout. T.e., for every £ >0 there

exists § > 0, where § depends on € but not on X1 Or Xp, such
that 0 < Xy = X € Simplies

£(xy) - £(x7) ¢ ¢.



value 61 > 0 such that 0 ¢ C(x2) - C(xl) < €/2 provided
0gx,y - Xy £61. The convergence of the sum of the y{dj)

implies that there is an integer N such that % vy (d
i=N+1

Let 0, > 0 be such that at most one d;eD with i ¢ N appears

1)< /2.

in any interval ag x & a+ d5. Let 8 equal the smaller of

61 and §,. Then for any X1.x2 with 0 & x5 - x; &8 we have

f(xz) - f(xl) = C(x2) + X Y(di) + p y(di) + @(X2)
di<xo di<xy
djeD dieD
igN i>N

-IC(x1) + 2 y(dy) + 2 y(dy) + 9(xp)]

di<Xl di<Xl
diED diED
igN i>N

H|

[Clxg) = Clx)] + [ 2 y(q;) + 0(xy) - 0(x)+ | £ y(dy)]

X184< % x18d3<x)
d; €D d; €D
igN i>N

/2 + yhax 4 e/ 2

A

{since e(xz) may be included in the first or second sum of v (d;)

" as arprorriate). Therefore

ax
flx,) = f(x)) g + yIaX
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11. Properties of (l/T)log(WT/WO)

This section discusses statistical properties of (1/T)

log(WT/WO) which are useful in establishing our theorems.

For a given game Gp and strategy sp we define:

E [log(l + r h 1.

ol a

For the game ana strategy under consideration, Lt is the
conditional expected value of log (1 + ry) given the partial
history through the (t-1)st period. Ly for s% and s% will be
denoted by LE and LY. For the given game and strategy, Lg

is an exact (non-stochastic) function of ht—l' Generally

Ly is a discrete random variable depending on the discrete
random variable ht—l' If the same wheel is spun each period,
Ly is a constant.

For a given game and strategy we also define:

log({l + rt) - Lt.
At is a discrete random variable whose probability distribution
may depend on G Sqpr and ht—l‘ Note that Ay 1s an exact

{non-stochastic) function of ht' whereas Lt is an exact function
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of ht—l' The random wvariable Ly, an exact function of ht

for given G_ and sp, always satisfies:

T

11.3 log(l + ry) = L, + hg.

Taking conditional expected values on both sides of 11.2 and

using 11.1 we get

11.4 E [A

hence, taking the expected value of the above over all values

of ht-l' we have

11.5 E(Ap) = E[E Dilhy 417 = 0
he1

For a given Gy and Sp we define

T
11.6 L = L(hT) = (1/T) v Lt
t=1
and
_ T
11.7 A = A(hT) = (l/T)tzlAt.

11.5 and 11.7 imply
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11.8 E{}) = 0.

We have, f iv
ave, for a given GT, ST and hT

T
(l/T)log(WT/WO) = (1/T) £ 1log(l + rt)
t=1
T T
= (1/T) £ Ly + (1/T) © A e
t=1 t=1
i.e.,
11.9 (l/T)log(WT/WO) =L + A,

For T » t > t' 2 1, the covariance between}\t and A+ may be

written as

11.10 cov(hi,Ags) = E - A ]
11.1 = :
1 EIED dthy 11
t-1
11.12 = E
LR L
t-1



In step 11.12 note that h

t-1 implies ht' exactly, and

hence A

the final result -- that At' and At are uncorrelated.

The variance of X is therefore

T
11.13 var(%) = (1/T)°E var(x ) <
t=1 t

€ (1/T) [loa (1 + M1y _ 10g(1 + rlowy2,

hence, var(X) - 0 as T + =,

In sum, for any sequence of games G ,G_ , G. , . .
T T Ts
1 2
and strategies s S r Sm s - « ., Meeting the assumptions
Ti’ T2 T3
described in sections 7 and 8, we have E(}) = 0, and wvar (1}

approaches 0 as T approaches infinity. This plus the
Tchebychev inequality implies:
Lemma 2 For any €> 0 and p > 0 there exists a T* such

that if T 3 T* then

prob(|%] » &) ¢ p.

This will be used to prove

Lemma 3 For any € > 0 and p > 0, there is a T* such

that T » T* implies that

prob[(l/T)log(wﬁ) > (1/T>1og(w§) + el & p

42

g since t' § t-1. Substitute 11.4 into 11.12 to obtain



where Wg and W? are the values of WT provided by sg and s&

T
respectively.

Since by definition

k m
Lt}Lt
f
or all html’ we have
11.14 ok 5

for all hT. This and 11.9 imply that in order to have
m k
(l/T)log(WT) 2 (l/T)log(wT) + £

we must also have

The probability of the latter relationship is lesgs than or

egqual to

11.15 prob[[xk[ > e/2] + prob[[Xm| > e/2].

-

To complete the procf, note that lemma 2 implies that
there is a value of T* such that each probability in 11.15

is less than p/2.

43
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1l2. Proof of Theorem 1

In the present section we prove

Theorem 1 For any € > 0 there is a T* such that if

T > T* then

k
EV(g') > EV(g™ - g - yMax

where gk and gm are the values of g provided by strategies

S? and sT respectively, in the game GT as defined previously.

TF
Since
q = (l/T)log(WT/WO) = log(l + qg)
is a strictly monotonic function of g for g > - 1, we may
substitute

g.—.eq—l
in the bounded version of V(g) defined in section 10. Thus
U=vi(g) =v(ed - 1) = vi{g).

U is still bounded and monotonic when exXpressed as a function

of g for g » -~ 1, i.e., for - ® < g < + ®»; hence the discussion

in section 10 of bounded, monotonic functions applies to vi{g).
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Since E[Vg(h = E[v(g(h for any G , s , h , we ma
Vg (h )1 = Elv(q(hy)] Y G S, b y

prove theorem 1 for v(g) rather than V(g). Lemma 1 implies

that for any € > 0 there exists a § > 0 such that

0 < V(q2) - v(ql) < e/2 + Ymax
provided
OSqZ—ql.scS
By lemma 3 there is a T* such that
prob[qm z qk + 0]« ni €/210w
U - U
where uPt = v(rhi) and Ulov - V(rlow). 1f yhi - Ulow

. o hi lo L
theorem 1 is trivial. Here we assume U > U W. Writing

uk and Um for v(qk) and v(qm) respectively and letting
p = problq™ 3 g® + 5]
we have
g™ - muX = EpuM - vk
=p - [EW" - 05 |q" » ¢* + 5]



Thus
EUm _ EU]( <p (Uhl _ UlOW) + (1 - p)
£/2 : low
ohT /UlOw (P - ™) 4 ey 4 TR

Thus for T » T*

13. Proof of Theorems 2 and 3

In the present section we prove

46

(e/2 + 8%

Theorem 2 If U = U(W_) is bounded and monotonically

T

increasing, and if there is an o > 0 such that
prob(fk > a) +1as T »
then
EU" »- U ! as T » «
where
uPl - the LUB of W)
As defined previously
K s Lk

L™ = (1/T) = L
t=1 t
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The theorem includes as a special case the situation in which
there is some riskless investment with positive return always
equal to at least B » 0. 1In this case o = log{(l + B) would
meet the requirement in the theorem.

Since

Wp 3 W (1 + x5 o
we may define
w = log Wp - log We,
and may substitute
U= U(Wg) = U(eW+l°gWo) = uw).

Since U is a bounded and monitonic function of WT for
0 < WT < oo,
it is also a bounded and monitonic function of w for

- % e W < @,

Thus the previously established properties of such utility

functions apply to u(w). Also, for any Gp and sy,
Eu(w (hp) )= EU(Wp (hy))

since both expectations are sums of products of identical proba-
bilities and utilities. It will thus be sufficient to show the

theorem for Eu(w).
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Let A be a number such that ¢ > A > 0., By the hypothesis

of this theorem there exists T, such that T 3 T, implies

prob(ik ga - A/2) g e/4 .
Uhl _ Ulow

Lemma 2 implies that there is a T, such that if T = T _,then

b b
-k
prob(x < - A/2) £ e/4
Uhi _ Ulow
Since Uhl = LUB of U(Wp) = LUB of ul{w), there exists w* such
that w > w* implies u(w) » Uhi - /2. Let T, be some value

of T greater than w*/{a - A). If T > T, and

(1/T)w > o - A

then w 3> w* and thus U 3 ulMl - e/2,

Note

(1/T)w = ik + ik.

Let T* be the largest of T_, Ty and T,. Write Uk for u(wk).

Then for any T> T*

Uk = P E (Uk | (1/T)w < o - A+

(1 -p) - BOWO® | (I/D)w > a - &)
where

p = prob((1/T)w & o - A)

prob(ik < a - A/2) + prob(ik < -A/2)

e/2
Uhl _ Ulow

n

A



Thus

EU

Therefore

EUk

Theorem 3

EU (Wp) - UtO¥

49

=20k | (/T)w > o - A)
-p {E(Uk [ (L/T)w > a - A) - E(Uk | (1/T)wg a - A)}
>t S e/2 - ey2 - - plowy
ghi _ Ulow
> Pt e

If prob(I¥ ¢ & < 0) > 1 as T + ® then

_ .k m
for s = ST O Sq.

This is proved in a manner quite similar to the previous

theorem. This proof is not reproduced here.

In both the case in which

prob(f.k > % > 0) - 1

and the case in which

prob(ik < o< 0) - 1

we have

where c~»> 0 as T » «,

hi

In the first case this is because EUk - U"~. In the

low

second case it is because EU™ » U . It is not generally
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true in the constant U(WT) case, however, that

k - m

EU ” EU - €
where € > 0 as T > ® , This may be shown by a counterexample.
Suppose: that WO = 1; that in every period the investor

must choose a portfolio from the set

Xl % 0, Xy 2 0

where security 1 gives r = 0 with certainty, and X5 gives a

50-50 chance of r = +.25 and r = -.25. Suppose further that

o

=
=

!

= 0 for Wp < 1; U(WT) = Wp - 1 for 1 g WT < 1.25; and

U(WT) = .25 for WT 2 1.25. Since
5log(l + a) + Llog(l - a) < 0

for any a # 0, s% requires Xy =1, X2 = 0 for every t. Thus

Consider alternatively some strategy s which is the same
as s% for any preassigned T - 1 periods, but has Xy = 1, X, =0

in one period. The expected utility for this strategy equals

EU = LU(.75) + LU({1.25) = ,125.

Thus for this strategy EU - EUk = .125 for all games G
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14. Bounded Versus Unbounded Utility Functions

Theorems 2 and 3 assume that U(WT) is bounded from above
and below. In the present section we consider the plausibility of
this assumption. Throughout this discussion, when we speak of
a bounded function we mean one bounded both from above and
below. When we speak of an unbounded function we mean one that
is unbounded either above or below or both.
Dynamic programming arguments, Bellman (1957), imply that
the investor who follows an optimum strategy for maximizing
expected U(Wp) also maximizes the expected value of single

period utility functions

Here U; equals the conditional expected utility of terminal

wealth given that the investor has wealth Wt at time t, is

faced with partial history ht’ and follows an optimum strategy
from time t forward. As shown in the next section, U(WT) is a
bounded function if and only if the derived single period
utility functions Ut(Wt,ht) are bounded. Thus the plausibility
of bounded U(Wp) is equivalent to the plausibility of bounded

Upg (We o he) . We shall consider the latter function.

Dynamic investment games other than those with utility
depending only on terminal wealth also reduce to a sequence of
one period expected utility maximizations. Thus the plausibility
of assuming a bounded single period utility function is relevant

to classes of games beyond those considered here. We deal here
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with the one period utility function, however, not to generalize
the discussion, but to make the discussion more concrete.

This section presents two variations of the "St. Petersburg
game" along the lines of Bernoulli (1738) and Menger (1934).

One game shows the type of absurd behavior implied by any
utility function which is unbounded from above; the other shows
the type of absurd behavior implied by any utility function
which is unbounded from below. We shall refer to these as
"Menger games" of "type A" and "type B" respectively.

The discussion in this section deals with single period
utility functions, and concerns one period games that effect the
player's current wealth W, but not his opportunities for returns
in the future. We may therefore refer to a one-period utility
function as U(Wt) rather than Ut(Wt,ht) in the present section.
In the next section we will consider further the relationship
between the Menger games and the game G-

We first consider the Menger game of type A, constructed
to show the absurdity of acting according to a single period
utility function which is unbounded from above. Let k be any
number greater than 0. Let WirWorWaya.. be alternate values of

Wi such that
Uwy) 3 k + 2%,

Such a sequence of w; will exist if and only if U is unbounded
above. BSuppose a bet gives probability Pi = (1/2)i that wealth

Wi will result. Then its expected utility equals

o

. . - “"i-/i-—oo
EUGws)p; > k - m2togd -

1=]
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Such a game would be preferred to any finite increase in wealth

given with certainty.

1

For example, letting W 1,k = .001 and U = w2,a gamble with

t=1_

)i of resulting wealth equal to (.000001)(22i)

probability (%
has infinite value. Some of the p; and w; for this specific k
and utility function are presented in table 1. The first
column contains the index i, the second contains the probability
of the i-th outcome, and the third contains the ratio of ending to
starting wealth Wy = Wt/wt—l for the i-th outcome. Thus
according to the first row, for i = 1 there is a probability
of p; = .5 that Wye/We 1 will equal .000004. 1In other words, the
game provides the player with a 50-50 chance of losing 99.9996%
of his wealth. It similarly provides an additional one chance
in four of his only losing 99.9984% of his wealth and so on.
There is, however,a .000488 probability that Wt/wt—l will equal
4.194304; i.e., that the player will win about 319%: .000244
that he will win 1578% and so on. The utility maximizer with
U = w2 will prefer this game to any finite increase in wealth
given with certainty. I assume that the reader would not
prefer to play the game in table 1 rather than have a billion-
fold return on his portfolio for sure, and that he would doubt
the mental competence of anyone who would.

A similar game can be constructed for any utility function
which is not bounded from above. The game can be made to have
an infinite value even though, with proper choice of k, the game

seems hardly attractive at all to you or I.



Payoffs for Illustrative One Period Game With U (W

Table 1

)

i pi Wt/wt—l
1 .500000 .000004
2 .250000 .000016
3 .125000 .000064
4 .062500 .00025¢6
5 .031250 .001624
6 .015625 .004096
7 .007813 .016384
8 .003906 .065536
9 .0015853 .262144
10 .000977 1.048576
11 .000488 4.194304
12 .000244 16.777216
13 .000122 67.108864
14 .000061 268.435456

54
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Next let us consider the Menger game of type B constructed
to illustrate the absurdity of utility functions which are not
bounded below. The game involves values of W approaching 0,
although W = 0 cannot occur. We avoid complaining about the
problems of aw” (@ < 0) when W = 0, since W = 0 cannot occur
in the games GT'

The Menger game of type B provides a probability (1/2)i of
having end-of-period wealth w; with utility equal to no more
than -k-21 where k > 0. It is possible to find such a seguence
if and only if Ul%% goes not exist., With w; thus chosen expected

utility equals

Such a game would be worse than any end-of-period wealth W > 0
given with certainty.

For example, with U = -w™%and k = .001 we have

w; = 1,000,000- (2721

).

This is tabulated in table 2. The game gives a 50-50 chance
of a two hundred and fifty thousand-fold increase in wealth for
the period, one chance in four of approximately a sixty-two
thousand-fold increase in wealth, etc. It does however subject
the player to a probability of .000488 that a 76% loss will occur;

a probability of .000244 that a 94% loss will occur, and so on.

o

For the player with U = -w 2, this game is worse than any

end-of-period wealth Wy > 0 given with certainty. He would



Payoffs for Tllustrative One Period Game With U(w,)

Table 2

-w

e

56

t

i Py We/ Wiy
1 .500000 250,000.000
2 .250000 62,500.000
3 .125000 15,625.000
4 .062500 3,906.250
5 .031250 976.563
6 .015625 244,141
7 .007813 61.035
8 .003906 15.259
9 .001953 3.815
10 .000977 .954
11 .000488 .238
12 .000244 .060
13 .000122 .015
14 .000061 .004
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rather have a 99.999999% loss with certainty, for example,

than play the game. I assume that the reader agrees that it
would be absurd for an investor to give up "virtually everything”
with certainty rather than risk the game. But some such

absurdity can always be shown if Ulow does not exist.

15. GT and the Menger Games

This section cares for some loose ends related to the
preceding discussion. In this section, for example, we show
that the single period utility function Ut(Wt,ht) in a game Gip
is bounded above and below if and only if U(Wgp) is thus bounded.
We also consider an apparent contradiction between theorems 2

and 3 and the results of the last section in that the latter

rules out any unbounded single period utility function including

To show that in any game Gp the single period function
Ut(wt,ht)is bounded above and below if and only if U (Wp) is thus

bounded, we may show

(a) if U(Wp) is bounded above and below then so is

U, (W,,h.); and

(b) if U(WT) is unbounded from above or below then so is

(a) above follows immediately from the definition of Ut(Wt,ht)

as a conditional expected value of U(Wp) . If U(WT) is bounded
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by UlOW and Uh:'L

any conditional expected value of U(WT) will
also lie within these bounds. (b) above follows from the
assumption that 0 < rloW ¢ ry & Dl This implies that if

U(WT) is unbounded from above so is Ut(Wt,ht), since

low, T,

where the latter approaches « as Wr approaches «; whereas if

U(WT) is unbounded from below so is Ut(wt,ht), since

hi.T
U W ,h) s UL+ r 1) " e Wp)

where the latter approaches - « as Wp approaches 0. This com-
pletes the proof.
The following point may need clarifying. 1In every game

GT we have

0 < rlov ¢ r, < L

Both the type A and type B Menger games violate such an
assumption for any rlow > 0 and any rhi, Therefore no game Gip
can have a Menger game for one or more of its T periods. How
then can we use a Menger game to show the absurdity of unbounded
utility functions in Gp?

Imagine a game HT+l consisting of a one period Menger game
followed by a game Gp. The initial Menger game does not affect
the wheel to be spun at t = 1 in Gp. It only affects the initial
wealth, W,;, at the start of Gp. What has essentially been shown
concerning the relationship between the games Gp and Hpyq ig
this;:
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the single period utility functions in the game

Gpr and hence in the game HT are bounded

+1°
above and below if and only if U(WT) is thus

bounded

hence

if a player is to be allowed to play a Menger
game once only, and thereafter must play Gp, a
properly constructed Menger game can be found to
provide + ® or - = expected single period utility

if and only if U(WT) is unbounded above or below.

Thus while GT cannot include a Menger game, the Menger games
and the game HT+l can be used to show the absurdity of assuming
an unbounded U(WT) in a sequence of games GTl’GTg""

Next, let us consider the following apparent contradiction
in our results. The Menger games show that certain absurd
behavior can follow from any single period utility function
which is unbounded either from above or below. We have further
noted that the implied single period functions for any game Gm,
or any game HT+1’ is unbounded if and only if U(WT) is unbounded.
We therefore conclude that, to avoid a utility function with
such latent absurdities, we should assume that U(WT) is bounded
from above and below. This in turn implies that, under the
conditions of theorems 2 and 3, the sk strategy is asymptoticaly

T

optimal. But s% has us use log(l + r} = log(Wy) - log{(W._;) as

a single period utility function; and this is unbounded both

from above and below. Contradiction?
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Not really. The Menger games show that an unbounded single
period utility function, such as Ut = 1og(Wt), can lead to
absurd results in a one period situation in which possible

wealth outcomes approach either 0 or ». But in any game G,

the possible wealth outcomes in a single period are bounded by

low hi
0 < (1 + < W, /W < + .
( r ) < t/ £o1 (1 )
Thus theorems 2 and 3 and the discussion of the Menger games may
be reconciled as follows: The Menger games imply that the utility
function U(WT) must be bounded to avoid certain absurdities.
But theorems 2 and 3 imply that, under the conditions specified,

the use of

log(Wt/W = log(l + rt)

t—l)

as the single period utility function is asymptotically optimal

in the game Gp. But the game GT’ by definition, bounds e by

low ¢ r ¢ rhl_

0 < r £

Therefore, using the unbounded logarithmic function over
this bounded range is asymptotically optimal under the conditions
specified.

One last point. While using log(l + r) provides asymptotically

optimum results, it does not follow that Ul(Wl,hl) + log(l + r)

as T -~ «, Under the conditions of theorem 2, for exanple,

hi

Ul(thl) > U as T + «» for any Wl > 0; i.e., the implied single
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period utility function for the first period approaches Uy = Uhl

for Ww. > 0.
Y

But if we acted according to the latter utility function we
would be indifferent between, for example, a 6% gain with cer-
tainty or a 6% loss with certainty. It follows that, whereas
using log(l + r) as the single period utility function will give
optimum utility asymptotically, in contrast disastrous results
could follow from using throughout any GT the limiting function

approached by Ul(wl'hl)'

16. Historical Note

If the reader agrees with the arguments and conclusions of
this paper it may seem that, having returred to the Kelly-Latané
expected log rule, we are no further ahead than if Mossin and
Samuelson had never raised their objections. But theorists
since Euclid, or before, have not been satisfied to know correct
answers, but have sought to know them for correct reasons. In
particular they have sought to know which specific results may
be deduced from which basic assumptions.

Markowitz (1959), chapter 12, postulates a simple set of
axioms as its fundamental assumptions concerning rational behavior
under uncertainty. From these assumptions it is fairly easy to
derive the Savage (1954) conclusion that the rational economic
man acts according to expected utility and personal probability.
Hence, in chapters 6 and 13, the applicability and limitations of

E,V analysis were explored in terms of expected utility.



62

Given these fundamental assumptions it was a non sequitur
to justify the expected log rule for long run investment by a
law of large numbers argument a la Kelly. Hopefully, the matter

has now been set straight.



Bibliography

Baumol, W.J. "An Expected Gain - Confidence Limit Criteria
for Portfolio Selection," Management Science, October 1963.

Bellman, Richard Ernest. Dynamic Programming, Princeton University
Press, N.J., 1957.

Breiman, Leo. "Investment Policies for Expanding Businesses
Optimal in a Long Run Sense,” Naval Research Logistics
Quarterly, 7:4, 1960, pps. 647-651.

Breiman, Leo. "Optimal Gambling Systems for Favorable Games, "
Fourth Berkeley Symposium on Probability and Statistics, I,
1961, pp. 65-78.

Bernoulli, Daniel. "Exposition of a New Theory on the Measurement
of Risk," Econometrica, XXII, January 1954, pPp. 23-63.
Translated by Louise Sommer - original 1738.

Cohen, K. J. and Pogue, J. A. "An Empirical Evaluation of
Alternative Portfolio-Selection Mcodels," Journal of
Business, April 1967.

Kelly, J. L., Jr. "A New Interpretation of Information Rate,"
Bell System Technical Journal, 917-926, 1956,

Latane, H. A. "Rational Decision Making in Portfolio Management,"
Ph.D. dissertation, University of North Carolina, 1957,

Latane, H. A. "Criteria for Choice Among Risky Ventures,"
Journal of Political Economy, April 1959.

Markowitz, Harry. "The Utility of Wealth," Journal of Political
Economy, Vol., LX, No. 2, April 1952, pp. 151-158.

Markowitz, H. M. Portfolio Selection, Efficient Diversification
of Investments (John Wiley and Sons, New York), 1950,

Menger, Karl. "Das Unsicherheitsmoment in der Wertlehre.
Betrachtungen im Anschluss an das sogenannte Petersburger
Spiel," Zeitschrift fuir National®dkonomie, Vol. 5, 1934,

Mossin, J. "Optimal Multiperiod Portfolio Policies," Journal of
Business, April 1968,

Samuelson, P.A. "Risk and Uncertainty: A Fallacy of Large
Numbers," Scientia, 6th Series, 57th year, April-May 1963.

Samuelson, P.A. "Lifetime Portfolio Selection by Dynamic Stochastic
Programming,"” Review of Economics and Statistics, August 1969,




Savage, Leonard J. The Foundations of Statistics, John Wiley
and Sons, New York and Chapman and Holt, London, 1954.

Sharpe, W. F. "A Simplified Model for Portfolio Analysis,"
Management Science, January 1963,




