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Abstract

This paper documents the biases in using sample arithmetic or
geometric means of one-period returns to assess long run expected rates
of return. The formulae developed are applicable to other compound
growth processes. For types of distributions of one peried returns
likely to be encountered for bonds and stocks, numerical values for
these biases are given. Then four unbiased estimators of long run
expected rates of return are developed and their relative efficiency

examined.



[. Introduction

In a variety of financial decisions, an individual or firm must
assess the long run expected rates of return of some investment vehicle.
As one example, a professor whose institution Invests in TIAA/CREF on
his behalf would certainly try to assess the magnitude of his retire-
ment fund in determining his current schedule of savings. As another
example, an actuary in calculating premiums for a life insurance policy
would need to make some assumption about long run expected rates of return.
Such persons as these would typically base their assessments of future
expected rates of return upon past experience.

Assume, for instance, that this past experience consists of T
monthly relatives, defined as the ratio of the value at the end of the
month to the value at the end of the previous month. Now, assume that
one wishes to determine the expected increase in value of this asset |f
it were to be held N months, where this increase is measured by the
ratio of the terminal value to the initial value -~ a so-called N-period
relative. |If it can be assumed that the relatives In each single period
approximate identically distributed independent normal variates, the ex-
pected N-period relative is given by the population expected one-period
relative to the Nth power.

In practice, one does not know the population statistic and
therefore must make an estimate. Some might be tempted to estimate the
expected N-period relative by raising the arithmetic average of the T

one-period relatives to the Nth power. As long as N exceeds one, this
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procedure will yield an upward biased estimate; Others would take the
geometric mean of the T observations and raise this number to the Nth

power to derive an estimate of the expected N-period relative. This estimate
is downward biased if N is less than T.

The paper develops formulae for the magnitude of these biases which,
when evaluated at reasonable values for the stock market, show that the
biases are sometimes substantial. More generally, these formulae can be
used to calculate their magnitude for any compound process.

An unbiased estimate of the expected N-period relative for N<T will
therefore be between the arithmetic mean raised to the Nth power and the
geometric mean raised to the Nth power.1 Finally, this paper will propose
and evaluate various unbiased estimators of the expected N-period relative

for data like those found in the bond and stock markets.

ll. The Bias in the Arithmetic Mean

Let Rt represent an one-period relative or one plus the interest
rate. Further,assume that Rt is an independent, normally distributed
random variate with positive u and non-zero o{R) -- stationary over time.

It is convenient to define a new random variable € as

. =u+e.
2.1 Rt M Et

The random variable £ is thus independently and normally distributed with
mean zero and a standard deviation the same as Rt'

The expected N-period relative, denoted by E(WN), is given by
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2.2 E(WN)

N
El 1 Rt
t=1

(n + €

il
m
N ===

t=1

Because of independence, 2.2 becomes

_ N
2.3 E(WN) = u

Equation 2.3 shows that the population expected N-period relative is the
population expected one-period relative ralsed to the Nth power .
From a sample of T observations, Rt’ t=1, ..., T, an un-

biased estimate of the expected one-period return is

T
2.4 A=yu+ (3

where A denotes the arithmetic mean of one-period relatives. Raising
2.4 to the Nth power in the spirit of 2.3 and letting

T
z

2.5 h = ( et)/T,

t=1

one obtains the following estimate of E(wN);

2.6 AV = eV

It follows directly from 2.6 that the estimator AN is asymptotically

unbiased and consistent. Since h is an average of norma]lyraist;}baféd and

independent random variables, h is itself a normal variate. As T approaches

infinity for fixed values of N, the variance of h will approach zero and

therefore the probability limit of AN is uN.



Al though AN is asymptotically unbiased and consistent, it is up-
ward biased for finite T and N greater than one. Applying expected value

operators to 2.6 yields

2.7 E(AN) = E[(u + mY

Jensen's inequality shows that the term on the right is equal to or greater
than uN, s0 that the arithmetic estimate is upward biased.

To measure the magnitude of the bias, E(AN) was evaluated for
values of u from 1.00 to 1.01 and a{(R) from 0.03 to 0.15. The values
assigned to N and T ranged up to 100. These ranges are roughly the ranges
one might encounter in empirical work with monthly relatives for bonds
and common stocks. A comparison of the estimated expected N-period re-
latives with the corresponding population statistic discloses that the
biases are in many cases substantial. For instance, for E{(R) = 1.01 and
o(R) = 0.15, the expected L0-period relative estimated from 80 observations

Is 1.8416 compared to the population statistic of 1.4888.

lil. The Bias in the Geometric Mean

From a sample of T observations, the sample geometric mean 1is
calculated as

3.1 6= 1/7T

N =-

(R,)]

t=1

where G denotes geometric mean and where it is now assumed that every Rt
exceeds zero. An estimate of the expected N-period relative is given by
T

3.2 V= [ (R.)] N/T
t=1



If every Rt must exceed zero, Rt cannot be normally distributed as was
assumed in the previous section. Nonetheless, for monthly relatives of
stocks or bonds in which u will be somewhat greater than 1.0 and G(Rt)
around 0.15 or less, the distribution of Rt may closely approximate a
norma | distribution.3

The estimate of the expected N-period relative given by the
geometric mean in 3.2 is downward biased when N is less than T. The

demonstration of this bias follows from first substituting 2.1 into 3.2,

which gives 3.3:

I
3.3 G =1[1m (u+¢)]

Defining ¥ as|[ (u+ st)] - uT and taking expected values, 3.3 becomes

i =3~

3.4 EGN) = E (' + VT

Since p + €, must be assumed positive for the use of the geometric mean,
since a positive variable raised to the N/T power is a concave function
for N less than T, and since E(Y) equals zero, the following inequality

holds
3.5 EeY) <« @HVMT - N

providing at least one € is non-zero.
" . h .
If N equals T, the geometric mean raised to the Nt power provides
an unblased estimator, but this is not surprising in that this estimator

is merely one drawing from the distribution of N-pericd relatives. A



single drawing from a distribution is of course an unbiased estimator of
the mean. If N is greater than T, the estimator of E(WN) provided by
the geometric mean is biased upwards. Further, the estimate provided
by the geometric mean is not consistent.h

To measure the magnitude of the bias in the geometric mean,
E[GN} was evaluated numericallys for the same values of N, T, E(R), and
o(R) as for the arithmetic mean. These biases are sometimes substantial.
For instance, for E(R) = 1.01 and o(R) = 0.15, the expected 40-period
relative estimated from 80 observations is 1.1880 compared to the population
statistic of 1.4888. It may be recalled that the corresponding estimate
provided by the arithmetic mean was 1.8416.

The analytical and the numerical results of this section and the
previous one show that estimators of the expected N-period relative der-
ived either from arithmetic means or geometric means of T observations may
be substantially biased for distributions of relatives for common stocks
and bonds. More specifically for N less than T and N greater than one --

a case of importance for empirical work, the arithmetic estimate of E(WN)
will be upward biased while the geometric estimate will be downward biased.
Thus, an unbiased estimate of E(WN) will be between the arithmetic and
geometric estimates. The remainder of this paper explores methods of ob-
taining unbiased estimates of E(NN).

Before proceeding, it may be worthwhile to record an explicit com-
parison for the case in which N equals one since a large number of empirical
studies of stock market returns are based upcn this case.6 The arithmetic

mean provides an unbiased and consistent estimate of the expected one-



period relative, while the geometric mean provides a biased and inconsistent
estimate. Further, a formula to be developed in the next section can be
used to show that the geometric ‘mean has a larger sample variance than

the arithmetic mean.7 I't therefore appears that if one can assume that

the relatives, Rt’ are distributed by independent, stationary, normal dis-
tributions, the arithmetic mean provides a superior estimate of the ex-

pected one-period relative compared to that provided by the geometric mean.

IV. Unbiased Estimates

This section proposes four different methods of obtaining unbiased
estimates of the expected N-period relative for N less than T.8
The next section uses Monte Carlo techniques to obtain an insight into
the distributional Properties of these unbiased estimators as well as
the generally biased estimators provided by the arithmetic and geometric
means discussed above.

The first type of estimator wil] be dubbed the ''simple unbiased"
estimator. This estimator is appropriate where the number of observations
in the sample,T, is an integral multiple of the number of periods, N, for
which the expected relative is calculated. To calculate this estimate,
multiply the first N relatives together, the second N relatives, and so
on until the T one-period relatives are exhausted. Then, average these
products or N-period relatives, T/N in number, to obtain an unbiased
estimate of the expected N-period relative. The reader should note that
this procedure makes no assumptions about the independence of the distributions

of the one-period relatives.



The second type of estimator, discussed in [5], will be called the
'overlapped unbiased" estimator. This estimator proceeds by calculating
N-period relatives, T-N+1 in number, by multiplying the first through the
Nth one-period relatives together, the second through the (N + I)St ohe-
period relatives together, and so on. These overlapped relatives are then
averaged to obtain an unbiased estimate. Intuitively, some investigators
might anticipate that this estimator would be more efficient than the
previous one in that it incorporates somehow more information. Nonetheless,
it is easy to construct a counter example which shows that it may be less
efficient.9 Indeed, the Monte Carlo simulations in the next section will
show for data likely to be observed in the stock market that the''over-
lapped unbiased" estimator is probably less efficient than the "simple
unbiased' estimator.

The third type of estimator will be termed a 'weighted unbiased"
estimator because it is calculated as a weighted average of the biased
estimators provided by the arithmetic and geometric means. Using formulae
developed earlier in the paper, the footnote 10 shows that an approximately

unbiased estimator of E(WN) is given by the weighted average:

A .~ T-N N _N-1 _N
k.1 E(wN) S A T G

The coefficients of AA and of GN in 4.1 sum to one and can be used
to form a weighted average of the estimates of W provided by the arithmetic
and gecmetric means.ll These weights which are functions of T and N make
intuitive sense. When N equals 1, all the weight is given to the arithmetic

mean. When N equals T, all the weight is given to the geometric mean. As



N drops from T, more and more weight is given to the arithmetic mean and
less to the geometric mean. Since the arithmetic mean is consistent while
the geometric mean is not, the weighting is sensible.

The fourth type of estimator adjusts AN with an appropriate ad-
Justment factor. This estimator will be termed the "adjusted unbiased"
estimator. For monthly data from the bond or stock markets, 1 is likely
to be in the interval from 1.00 to 1.01 while o(R) may range as high as
0.15. For these ranges of u and o(R) and for N <80, T <100, and N<T,
the following regression which does not include u as an independent variable
12

fits the bias calculations extremely well:

1/N
i !

4,2 In lE(AN)]

" = =0.9174 + 1.9958 1n o(R)

+ 1.0441 Tn N-0.9989 In T, RZ = .9990

The values of [E(AN)]P/N, implicitly defined by 4.2, differ in absalute

values from their true values by 1.1 percent on average and by 4.2 percent

13

at most. Using the sample estimate to measure o(R), 4.2 impties for

any particular N and T a value of the ratio of E(AN) to uN.

Dividing this
ratio into AN should yield an approximately unbiased estimator of E(WN).
The next section will examine the degree of approximation introduced by

using a sample value of o{R) instead of the population value.

V. A Monte Carlo Analysis

To examine the empirical properties of these various estimators
of the expected N-period relative, 80,000 randomly distributed unit

normal variates were calculated using the procedure found in [14]. These
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variates, reexpressed so as to have appropriate values of E(R) and o(R),
were partitioned sequentially into 1000 separate samples of 80 observations
to correspond to a T of 80.

For each sample, AN, GN, and the four unbiased estimators dis-
eussed above were obtained for N equals 5, 10, 20, and 40. The adjusted
unbiased estimator was calculated using both the estimated and population
values of o(R). Although in any application only the estimated value
could be used, a compariscn of the two estimates will indicate the mag=
nitude of the error introduced by using an estimate rather than the pop-
ulation value.lh

Table 1 gives descriptive statistics of the distributions of the
various estimates for two cases: (a) u = 1.00 and c{R) = 0.03 and (b)
= 1.01 and o{R) = 0.15. A comparison of the arithmetic and geometric
means of T one-period relatives raised to the Nth power to the population
statistic, uN, show that the estimates are biased in the anticipated directions.
The simple unbiased estimate, as well as the overlapped estimate,are very
close to the population statistic as would be expected. The averages for
the three remaining estimators show that any errors introduced into the
estimates becuase of the approximations used in deriving the formulae do
not create any substantial biases. Further, a comparison of the two
estimates provided by the adjusted unbiased estimator show that little
error is introduced in using an estimate of o(R) instead of the population
value in calculating the adjustment factor.

The figures in Table 1 additionally suggest that the overlapped

unbiased estimator is markedly less efficient (say as measured by the standard
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deviation or the 0.05 and 0.95 fractiles) than the other unbiased estimators.
'n addition, the simple unbiased estimator appears somewhat less efficient
than both the weighted unbiased estimator and the adjusted unbiased estimator,
where the adjustment factor is estimated with the sample value of o(R).
Finally, the reader may note that the sample distributions are skewed to

the right with the skewness more pronounced for the case in which E(R) = 1.010

and ¢(R) = 0.150.

VI. Conclusion

The theoretical and empirical results of this paper suggest that
one should proceed very cautiously in using arithmetic or geometric
means of one-period relatives to assess the expected N-period relatives.
More explicitly, an estimate of the expected N-period relative der]jved
by raising either of these statistics to the Nth power would usually be
biased.

If one can assume that the one-period relatives are distributed
by an independent normal process, the paper has shown for data 1ike that
which might be encountered in the stock or bond markets an average of
overlapped data may be much less efficient than merely a simple average of
non-overlapped data. The Paper then went on to suggest two non=linear
methods of assessing unbiased estimates which appear somewhat more efficient
than a simple average of N-period relatives: (1) a weighted unbiased
estimator and (2) an adjusted unbiased estimator. Although there is little
difference in efficiency between the weighted unbiased estimator and the
adjusted estimator, the weighted unbiased estimator is probably safer

to use than the other. One could easily visuallze types of departures
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from stationary independent normal distributions which might lead to ab-
surd estimates from the adjusted unbiased estimator but not from the
weighted unbiased estimator. Yet, if one cannot assume independence of
successive one-period relatives of if there is even a slight chance that
these relatives are dependent, the simple average of N-period relatives
would appear preferable to the non-linear estimators which even under ideal

conditions yield only a modest increase in efficiency.
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Footnotes

ES
Associate Professor of Finance at the University of Pennsylvania.
The author wishes to thank the Rodney L. White Center for Financial
Research of the Wharton School for financial support, as well as Professors
Stephen Ross and Randolph Westerfield whose helpful comments were greatly
appreciated.

1The author has been familiar for some time with the biases in
using the geometric mean to estimated expected one-period or long run
rates of return. Research on a recent paper, co~authored with Irwin Friend,
[8] suggested that the arithmetic mean may yield substantially biased
estimates of expected long run rates of return. This paper is in part an
cutgrowth of this research.

Lawrence Fisher [7] observed in empirical data the biases assoc-
iated with the use of one-period geometric and arithmetic means to estimate
long run rates of return. He however did not give a full explanation of
this phenomenon.

Cheng a@g Deets [5] have previously shown that the geometric mean
raised to the N*' power is downward biased for N less than T and upward
biased for N greater than T. They however did not calculate the magnitude
of the bias. In the process of deriving a formula for such a calculation
and in extending the thearetical results to a comparison of the relative
efficiencies of arithmetic and geometric estimates of one-period expected
returns, this paper will again demonstrate these biases but in a more
concise way.,

2The computational formula for E(AN) was derived by first expanding
2.6 with the Binomial expansion and taking expected values. Noting that
h is normally distributed, all odd moments in the expansion can be set to

zero and E{(h') for even i replaced by (02(h))|/2. After

i!
VAR
(3): A
changing the index of summation and setting ¢2 (h) to 02(e)/T, the resulting
formula is

2

ey = N4
i

3

1 21 T

(o) v 21 (e <))
il

where n is the largest integer equal to or less than (N/2).

3Some investigators {(e.g., [6], [11]) prefer log normal distributions
on the assumption that the distribution of Rt would be skewed to the right.

However, [3] finds no evidence of asymmetry in the distributions of Rt for



15

monthly data. In fact for monthly data, there may well be no distinguish-
able empirical differences whether 4&n Rt or Rt Is used. For longer

periods, asymmetry will become more pronounced (cf. 1.

This statment is based upon the following: Taking the probability
limit of 3.2, one obtains

plim GN = exp {plim

[ |

log Rt}

- =

t=]

The term in the braces is N E [log R] , which is less than N log u for

non-degenerate distributions since the logarthmic function is concave.
Thus

plim eV < exp (N log u ) = uN
Of course, for fixed N, taking the probability limit implies that T > N.

5A formutla to calculate these values was obtained by taking ex-
pected values of 3.3 and rearranging terms to yield

N N T t %
E{G ]=w EjI 1+ —)
t=1 "
Using the exponential function, the above becomes

T €
6™ =" Eln exp| N tog (14 8
t=1 T H

On the assumption that et/u is Tess than one in absclute value, the log-

arithmic function can be expanded in an infinite series as

(_1)j+1 e, J

1 ] H

EieM = WV

t

=4

exp[-¥- X
1 j=

The expansion of the exponential function yields

I
N N N
E[G] =y g{ = [- T
i

™ g

II.MS

_qyJHl J
Lo (l)
t=1 1 J u

0 j=

Noting that € and ei, k #1; are independent and the formula for the ith

moment about the mean for a normal distribution, one can calculate the desired
numbers to any degree of accuracy by tedious but straightforward numerical
calculations for any specific values of the parameters.
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A representative sample of such articles includes [21, [4], [6],
and [10]. Each of these articles contain bibliographies which point to
a large number of other articles.

7This statement about efficiency is based upon a lengthy algebraic
calculation for which an outline follows: Remove the expected value
operators from the last equation in footnote 5 and set N equal to one.
Bropping from the expansion of this equation all terms of degree greater
than two and all terms involving cross products of ) and 2 k#1, one obtains

1 T |e {T-1) ¢ 2
- t t
G"‘].l 1+-f z - 7

t=1 H 2T u

Subtracting E{(G) given by the expression in footnote 10 from the above,
squaring, and taking expected values, one obtains

E{G -Em)}z

2 T
. O (et)

+ T=-1 2) 2
— - £ |G €2 - o%(e)
T 2T u g=1 °

Since the first term on the right is the variance for the arithmetic mean,
the geometric mean should have a somewhat larger variance than the arith-
metic mean,

8The techniques are designed for N greater than one although the
first three reduce to the arithmetic mean when N equals one.

9

A counter example using four one-period relatives Rt’ t=1, . . ., 4,
to estimate the expected two-period relative is as follows: Since the Rt's

e independent and stationary, the variance of the simple unbiased estimator
il

will be GZ(RIRZJIZ, while the variance of the overlapped unbiased estimator

is 02(R1R2)/3 + [4 Cov (R‘Rz, R2R3)/9]. Assuming £ (Rt) equals 1.0, 02(R1R2)

can be rewritten as [E(RTZ)]2-1 and cov (R,R,,R.R.) as E(R 2)-1. It is easily

1772273 1
verified that for E(RIZ) greater than 1.0 and less than 5/3, the variance of

the simple unbiased estimator is less than the variance of the overlapped
estimator. For example, if E(Rlz) = 4/3, the variance of the simple average

will be 21/54 compared to 22/54 for the overlapped average. It might be
noted that Cheng and Deets [5] showed that the expected sample variance
of an average calculated from a single drawing of two overlapped two-period relatives
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is smaller than that calculated from two non-overlapped two-period relatives.
Though correct, this observation about expected sample variances has no
obvious implications for the efficiency of these two estimators which should
be judged by a comparison of the population variances of the estimators

and not by the variances calculated from single samptes. The situation

they analyzed is simitar to a regression with autocorrelated residuals,

for which it is well known that the expected standard error calculated

from a single sample is downward biased.

0To derive this weighted average, the expected value of the estimate
of the N-period relative can be approximated from the formula in footnote 1
by dropping all terms involving moments of greater than the second order.
The resulting approximation is

N-2
e AV 2 Ny NN-1)o? (e)u
27
2
= e ey A2l
2T u

For the geometric mean, a similar type of approximation can be derived
from the last equation in footnote § by expanding'it and then by dropping
terms involving moments of ¢ greater than the second order. The result-
ing approximation is

22 2
e [GN] N (1 - ch(g) + No7(e) ] = uN[] - (T-n N () ]
2u 2T p2 2Tu

Solving one of these equations for [Noz(e)]/[ZTuz] and substituting

the resulting expression into the other, one obtains by solving for u the
basis for the expression in the text. Although this development involves
substituting approximations into approximations ~- a treacherous procedure,
the absolute bias in the weighted estimator for 1 < N< T will always be

less than the absolute maximum of the biases in AN or GN.

1]This technique is not the same as employed in [7].

12This regression was fitted for E(R) equal to 1.000, 1.005, and
1.010, for o(R) equal to 0.030, 0.060, 0.100, and 0.150 and for N running
from 10 to 80 and from 10 to 100 in increments of 10,

Including in u as an explanatory variable increased the value

of RZ to 0.99994.

L. . .
Similarly, estimates of E(W, ) were obtained for N equals 5, 10
and 20 and T equals 40 from the first half of each of the 1000 samples.

For reasons of space, these are not presented. They, however, give sub-
stantially the same conclusions.
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