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The concept that in equilibrium the anticipated return on a risky asset must
be sufficient to compensate the investor for risk has long been a part of tradi-
tional market lore. Yet the notion of a risk premium was only first made theo-
retically rigorous in the work of Sharpe [1964 ] and Lintner [1965] . The central
results of the mean-variance capital asset pricing models can be summarized in
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where E; - p is the risk premium, the difference between the expected return on

the ith asset, E and p, the risk free rate of return, E, - P is the premium

i
offered by the market portfolio, E , over p and 31, the "beta coefficient'" is pro-
portional to the covariance between the ith asset and the market portfolio. The

risk premium is, thus, proportional to the degree to which the asset return and

the market return move together. A security which moves inversely to the market

may be so valuable in diversified portfolios that it earns a negative premium,

i.e., its return is actually below the risk free return. Indeed, the major con-
tribution of the mean-variance capital asset pricing model may well be that it
formalizes the dependence of the risk premium on the relationship between the asset
and the market. One of the purposes of this paper is to demonstrate that this result
holds under much more general conditions than are required to develop the mean-
variance pricing model. In particular, if the price equation or something similar
did not hold at least approximately a type of an arbitrage situation would emerge
that would enable investors to earn arbitrarily large returns while assuming only

modest risk and this would be incompatible with market equilibrium.

This is an important result; in recent years a considerable effort has been



devoted to finding the exact conditions under which the mean-variance approach

to portfolio theory is valid and, more generally, under which the separation
theorem holds. The outcome of this effort has been somewhat disappointing in

that it has revealed that the mean-variance rules remain valid only under quite
restrictive assumptions. Either preferences must be expressible by the objection-
able quadratic von Neumann-Morgenstern utility function or investments must
essentially be normally distributed. The separation theorem has proved only
moderately more robust: Cass and Stiglitz [1970] have succeeded in completely chara-
terizing the class of utility functions which permit separation in arbitrary risky
environments and Ross [1971; 2] has solved the dual problem of finding the classes
of distributions that allow separation for arbitrary preferences. Both classes are
rich but fundamentally limited, and these results have cast doubts on the attempts
to characterize portfolio choice by two dimensions and, in particular, have
weakened the generality of the mean-variance approach.

Yet the mean-variance analysis has both a simplicity and a heurism to
recommend it, and there does not appear to be any ready substitute. If exact
validity is too much to hope for, perhaps there is an approximate sense in which
the results remain true. It has been suggested that the large sample laws of
probability may imply that a world with many securities behaves like a mean-variance
world. If distributions possess moments above the first, then by the Central Limit
Theorem portfolios that are appropriate sums of independent investments will be
approximately normally distributed. The more powerful limit laws of large numbers
imply that with sufficient diversification some types of risk may actually dis-
appear in large portfolios. The intent of this paper is to rigorously explore
these issues and to find concrete bounds on the errors involved in using the mean-

variance approach where it is not strictly justified.



That rigor is required and not simply an opportunity to exercise pedantry
in matters where intuition is self-evident can be quickly made clear. If, for
example, the set of feasible investments is such that for some preference
towards risk the brunt of the portfolio is placed in one, two or a small number
of securities, then no limit theorems can be appealed to and, in general,
the mean-variance approach will not even be approximately valid. It seems
clear, then, the conditions under which all optimal portfolios are greatly
diversified are roughly the sort of conditions which will justify the mean-
variance approach as an approximation.1

There are, then, two distinct points made in this paper. The first is
that the basic equilibrium condition of the capital asset pricing model is
essentially an arbitrage relation and may, therefore, be expected to be quite
robust. The second is that this result can be derived formally from the
general validity of the mean-variance approach in large markets and this latter
point is developed rigorously.

Section I considers the individual portfolio problem and some of the
relevant issues in a fairly general setting obtaining some interesting and
quite general theorems. Section II specializes the feasible set of investments
to what is generally called the class of one-factor market models. Section ITI
examines the implications of the previous results for the geparation theorem
and for their applications to the problem of equilibrium in capital markets.
The resulting arbitrage arguments are developed here and the reader interested
only in this point might skip the previous sections and begin here. Seetion IV
generalizes the results obtained in the previous three sections, considering,
in particular, the m-factor case, and Section V briefly summarizes the findings.

An appendix is included to provide proofs of some of the results of a purely



mathematical nature needed to support the arguments in the text but somewhat

tangential in nature.
Section I

The problem considered in this Section is the familiar (static) portfolio
problem. The individual is assumed to possess a concave (risk-averse) von
Neumann-Morgenstern utility function U(+) , whose expected value he maximizes
subject to choosing an investment in the feasible set of options and subject
to his budget constraint. Formally, the investor seeks
max V(&) = ;{U(a&')}

{4) s.t. «

e = 1,

where X = <§i"";in> is the vector of random (gross) returns per unit of in-
vestment in securities 1,...,n ; @ = (Ql,...,ﬂh) is the vector of proportions
of wealth placed in the investments and e = (1,0..,1) . For convenience

we have normalized initial wealth to be unity.2 In Section III we will con-
sider the case where one (or some linear combination) of the X.'s is risk-
less, but for the moment it is easiest to think of the i&'s as being random.

In general, we will not be concerned with problem (A) but, rather, with a

restricted problem with the additional constraint that OE = m , where E

is an n-vector and Ej = E[E}} + By varying m we can see how the optimal
portfolio c.'0 changes as a function of the mean return on the portfolio.

The unrestricted optimization problem then reduces to the best choice of m

or, more generally, the optimal tradeoff between return and risk. It is

precisely this tradeoff with which no approximation method could successfully come

to grips and from which the restricted problem abstracts., Indeed, the



mean-variance approach itself is designed only to elucidate the efficient
frontier of the feasible investment set from which the optimal choice is

drawm.

Associated with the restricted problem is the associated quadratic problem
(AQP) :

min Var {ox}
(AQP) S.te

oe = 1
and
E = m,
and the optimal solution to this problem will be denoted by ot
There are two distinct types of approximation questions which can now
be asked. First, we can inquire what penalty is exacted by using the quadratic

approximation. Specifically, what is
EvE*n} - Efueih

and how does it behave with an increase in the number of securities n ? The

second and more subtle question is whether and in what, if any, sense the

actual portfolios o° and of become similar. If

-] denotes a norm, we

will want to know what happens to 1|ao - aq” as n grows large. The uniform

o
(or sup) norm will be used to compare the two vectors o and gb si.edy
q, 3
i

In this section we will concentrate on approximation results of the first

1a® - o1l = sup a? -

4 .
type. Letting Vn denote the covariance matrix of(xl,...,xn), the first order

conditions for a solution to the AQP are simply

1

4 _ - -1
o ?xvnz+evjn e , (D



where X and © are Lagrange multipliers obtained from the constraints as

A E'v e - m(e'V_le)
-1 n n
-8 -1 -1 (2)
' - B!
9 m(e'V_"E) - E'V_'E
with
- -1 2 -] -1 5
A = (e'Vn E) (E Vn E) (e V[1 e) .

An important and familiar case occurs when the 'Ej are mutually independent
{(or have zero covariance)., The covariance matrix Vn is then diagonal and

(1) becomes

@ . -2
o/ o, (lEj +8) , (3)
where
-2
A -1 z (Ej - m)cj
-2
8 z - E.)E.o.
- (m J) Jc_'l ’
J
-2.2 2 =2 -2
A =(ZEg. ) - (CE0,7) (£05.7),
PR s J ] . ]
] J ]
and
o? = V.., , the variance of ¥, .
i ii i

It is convenient to write the return on the quadratic portfolio as

i

Rd = aq; aqE + aqy

m+ o35 ,



with ¥ =X - E and E{¥} = E{X - E}] = 0 . This separates the return com-
ponent m from the risk aq9’. On the assumption that the <§j) and, there-
fore, the (?}) are independent, we can now use the law of large numbers to

demonstrate that the risk agf -0 almost surely (a.s.).6 The complete con-

ditions sufficient for convergence are spelled out in detail in the first theorem.

Letting
2 -2
A =Z o, (4) (a)
=1
and
-1 " o L S S
B =A 551 [EJ. - AL jflEici ] o (4)(b)y

we have the following result,
Theorem I: If (gj) and <Ej> are uniformly bounded, (Bn> is uniformly

bounded away from zero, and

By, [¥pseeesy 4} = 0, A(1L)
then

a% L0, (a.s.) .

Proof: See Appendix

The need for the bounds in the theorem is best illustrated by means of
examples, The need to restrict (o?) and (Ej) is obvious. 1IFf Ej were
to diverge to, say, +® sufficiently rapidly, then a subsequence that diverged
monotonically could be chosen. The portfolio contributions of the members

7
of this subsequence ag need not go to zero as 0(%), and the limit con-



ditions would not be satisfied. Intuitively, the increasing mean makes the

later members of this subsequence so desirable that non-negligible proportions
) , 2 . .

of wealth are put in them. Similarly, if cj were to diverge rapidly, the

risk-averse character of the mean-variance formalism might place non-negligible

proportions of the portfolio in early securiti.es.8

The restriction on (Bn) » however, is somewhat less obvious than the
others. Essentially, it requires that there be sufficient variability in the
(Ej) sequence. - Notice that B is simply a sample variance of the (Ej)
sequence using for a sample distribution of (ciZ/An,...,g;Z/An) . A simple
example will illustrate the need for the restriction on (Bn) . Suppose that
there are three types of (independent) securities with identical variances
but distinct means (el,ez,e) » and suppose we let the population grow by adding

n  independent securities of type e » keeping one each of types e and

e, . From A(3)for §=1,2,
a? = A‘l{([e - m} ej + em - e2) n
+ ej(e1 + e, - Zm) + (e1 + e2) m
- (e%+ eé)] ,
and for j > 2 ,
a? = A-lfe(el +e, - 2m) + (e + e)

2 2
= (e]. + 92)} >
where

2 2 2
A = [2e(el + e2) - (e1 + e2) - 22" n

2 2
- (e1 + e2) .
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Now, 88 N w o , for j=1,2 ,

A (m-e) (e-e))

J

- e) - (e% + e2

2e(e1 + e 2)

2

and for j >2 ,
q 1
aj - O(n) .

Thus, while the risk invelved from the third type of security will be
completely diversified away, that from the first two will remain and
(m - e)

¥ =1 1 [(e -e) ¥, + (e -e) ¥, .
m(e, + e, - 3) -(ei+e§) 171 27 72

g

o 9

From Theorem 1 it is a short step to the result that

Theorem 2:
E{U(a’®)]} - E{u(e®R)} -0 .

Proof:

We need only to make use of the principle of stochastic dominance which
asserts that given any two risky choices U and V s T will be preferred

to ¥ by every risk-averse investor if and only if
F~u-Z+%,

~~ ot

where " ~ " denotes that V and U - 2 + € are identically distributed, Z

~

is a non-negative random variable, and € is a conditionally independent

error term; i.e., E{€ ’ﬁ - Z} =0 (see Ross [1971; 1]). Since we have shown

that
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RY m + ag? -m, (a.s.)

and since

ﬁo m + a9§

is inferior to m by the principle of stochastic dominance, it must follow

that R° -m, (a.s.).

0.E.D.

Notice, though, that neither Theorem 1 nor Theorem 2 is sufficient to imply

that the two portfolios ao and qﬂ approach each other. It is fairly easy
to see that both HQOH -0 and ”aqH - 0 , and, therefore, ”ao - aqH -0,
but this is not very interesting since both vectors are approaching the zero
vector. What would be interesting to show is that for all i , (ag/ag) was
bounded, or even better, (af/ai) -1 . This second, stronger approximation

result will be the subject of the next section as will the generalizations of

Theorems 1 and 2 to the case where <§1""’§h> are dependent.

Section II

To begin with we will assume that the returns <§ »+++,X ) are generated
1 *n

by the following simple one-factor market model:

X, = E.+88+¢, ; i=1,...,n , 5
x i BJ ] i n (3)

where Ej and ﬁj are constants (the latter is gererally referred to as the
volatility of ;j), § is a random market factor common to all securittes:

. ~, 2 A~
with E{6} = 0 and var [6} &g , .and ej is an error term, mean zero

and conditionally independent of T and the other error terms.lo The market
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factor & 1is variously interpreted as (anticipated) GNP or some index of overall

economic performance. The restrained portfolio problem is now

max E{U(ax)}

and
oE = m,
and the AQP is

22
oV a+ (¢f)¢d

min Var (ox)
240
= oV +o0" 88" o

2 oMy

e = 1

and

ok = m .11

The solution to this AQP is identical to that given in (1) with Vn re-
placed by M .

The central theorem of this section asserts that the second type of ap-
proximation ada~ o is valid with the single-factor model. We will build to

the theorem with two preliminary lemmas.
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Lemma 1:

If we assume that (Bj} s (Ej) , and (cj) are bounded as in Theorem 1,

1

that e'V_lE R e'V-IB ,» B'VE, B‘V-IB , and e'V-le are of the same order

and that there exist positive constants a and b such that

v le N av Tl (ervle) - (evin? » ae'vle) | (6) (a)
and
B =(e'M o) (e (e le) - )2} 2, (6) (b)
then
o _.0(;1;) -0
and

q L
O.'B—»O(n) -0,

Proocf: See Appendix

An important corollary of Lemma 1 is the rather startling conclusion that
as n increases the market model implies the disappearance of all risk, including
systematic risk.

Corollary 1: Under the conditions of Lemma 1,

erq = alq;{‘ - MM ] a.S.

Proof: From (5),

g

m+ (o19)% + IF
and since

q 1
ozﬂ-»O(n) -0
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and

1
ol = 0() -0,
the law of large numbers implies that the risk component term
(B8 + o€ L0, (a.s.) .

The proof is now identical to that of Theorem 2.
Q.E.D.

The boundedness conditions in the statement of Lemma 1 as in that of
Theorem 1 are designed to prevent either the asymptotic appearance of a risk-
less asset or, more generally, the asymptotic concentration of securities.

In the market model, however, in the absence of these conditions there is an
additional source of risk, systematic risk, which need not be diversified away.
Suppose, for example, that all securities have the means a + rBi save for

the first which has a mean B, + rBl, E, # a . This case can be shown to

violate (6) (b).12 More directly, though,

m+ (BB + o

~
[l

R
ald
]

1 ~
m + ;[m - a+ al(a - El)]3'+ oe
+im-a+ga-E)F+ 0¥
—-m r[m a+a(a 1) %€ (a.s.),

if aj j#1, is of 0(%) . There remains, however, a fundamental choice

between the two types of risk 3' and Ei » Wwhenever m £ a ., To set

@ - O(%) would diversify away all independent variation, but the market

m

risk would approach | ; a]E'. On the other hand, if the market risk is set .
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equal to zero, the systematic risk from the first asset will be non-negligible

and will be given by [%—::25161 . This is a type of case that the require-
1

ment (6) (b) that E display sufficient variation as measured by M rules

out.
A somewhat more interesting case where all securities have mean
Ei = p+ rgi is also ruled out by the conditions of Lemma 1. This is the

security line criterion for capital market equilibrium. In this case, though,

the tradeoff between the two types of risk is also eliminated since the port-

- P

folio must be subjected to a systematic risk [m 15 to attain a mean
return of m . The unsystematic or independent risk, however, can still be
diversified away. Stating this formally, we have the following corollary.

Coroliary 2: If the market model is restricted to

~
x

. E.+ B ¥+ ¢,
j j BJﬂs %3

where

o]
I

+ rf3,
p BJ

and the conditions of Lemma 1 other than ( 6) (b) are satisfied, then
e _ a0k
@ 0(n) -0 .

This implies that all of the unsystematic risk will be diversified away

and

RY

% -m+ B ; 217, (a.s.) .
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Proof: Tdentical to proof of Theorem 2. E.D.

In summary, though, outside of this special equilibrium condition, if
all of Theorem 2's conditions are satisfied, then R =o% wm and
all risk including the so-called systematic component associated with the B
weights may be diversified away. This is in contrast to the statement by
Sharpe that ". . .the portfolio risk due to uncertainty about the level of
the index is no smaller than that associated with the average security" (Sharpe
[1970]). Sharpe was referring to a portfolio where a3 = 1/n , but this
illustrates the dangers involved in implying that the market risk as represented
by 5 is necessarily umavoidable. This will be true only when the capital
market is in equilibrium,

Before proving the central theorem, we need one additional intermediate
result.

Lemma 2: The optimal solution o and QPB are bounded of order 1/né s 1.2,

[l
and

’n%&OB] are bounded.

Proof: See Appendix

We can now prove our main theorem,

Theorem 3: Under the assumptions of Lemma 1 on the market model,

X, = E.+p8.3+ %
k| j BJ €y 0
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the optimal solution ao to the portfolic problem

max E{U(a'X))

and

E{o'X} = o'E = m

converges to the solution o9 to the associated quadratic problem in the

sense that
l0e® - na?l| w0y -0,

as n -« ,
Proof: The first order conditions for a solution to the exact optimal

problem are given by

E[U' (%) g8+ D} = 1%E + 6% , (7)(a)
% = 1 s
and () ()
E = m

Onv o B O .
(Note that since @ x =m+ (@ 8)§+@ ¢ , we have subsumed the m term in

KO). Expanding (7) (a) in a Taylor's series about m yields

E{U' @ BI(BE+ 9} = E{U(m+ @%B)5+ "D (EF + D)

E{U' (m) (B3 + ) o
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+ E{U"I(rﬁ)((aos)g+ «°?) (6% + D}
+RE (U + (DT + DT+ ),
where Ye[0,@ )5 + «®F . Letting ¢ = U''(m) and
Y =AU+ D (@DF + 0+ DY)
allows us to rewrite (8) as
cMe” + v = 2%E + 9% . (9)

Lemma 2 asserts that o° o 0(1/n%) and B o 0(1/n%) which, together with

Lemma 2A jin the appendix,can be shown to imply that y - 0(1/n) . This re-

sult will allow us to obtain the sharper result that v - 0(1/n2) . First, we must
substitute  (9)  into the constraints (7} (b) and solve for (1°,5°)

Some algebra yields

20 Ad L | ey A Y,
=c + A = c +
5° g9 E'M Y 63 Ye
where
e™M B e'M e
A = )
1 -1
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and by (9) we obtain

@ = 1% g+ eOM-le - M-ly
- - - - -1
= chM 1E + chM 1e + YKM 1E + YBM 1e =My (1)
= ca¥ + [YAM-lE - VGM-le - My

From Lemma 1, A OC%), and from the boundedness assumptions together with

the observation that Y -'O(%) » the bracketed term can also be shown to be

- OC%) + But this implies that o® —aO(%) » and since QQB - 0(%) , we

can also show that QOB _.0(%) - Hence, by the second application of Lemma2A

in the appendix we now have vy - O(I/nz). At this stage the proof is immediate.

5 .
The bracketed term of (10) - 0(l/n") and, therefore,

1
le® - o] < o)
n
Hence,
F!nao - mq” - n0(—15) _.O(i) -0

n

Q.E.D.

The sense of approximation in Theorem 3 is quite important. As we noted

. 0 . . , . ‘e
earlier, o and ol are becoming increasingly diversified and approach

a zero holding in each security as n grows large. It is trivially true,

o o
then, that for large n s g N ag Theorem 4 asserts that no, A nag and
. . 1 13 . . .
that the difference is of order P Thus, in a fundamental sense the opti-

mal portfolio for any risk averse investor will be closely approximated by

the minimum variance portfolio. Theorem 3 can alsoc be easily extended to the

situation covered in Corollary 2.
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Theorem 4: 1If the market model is restricted so that Ei = p+ rBi and
the conditions of Lemma 2 other than (6) (b) are satisfied, then

lingd - napH - 0(%) -0 .

Proof: See proof of Theorem 3. Q.E.D.
In addition, both Thecorems 3 and 4 can be generalized so as to allow
for the existence of a risk free asset (or portfolio).
Theorem 5: If there is a riskless asset under the conditions of either

Theorem 3 or Theorem 4,

1
lpa? - na’ll = 0¢D) -0,

d

where op and o now include the holdings of the riskless asset.

Proof: A simple modification of the proof of Theorem 3. Q.E.D.

In particular, then, since the separation theorem holds for the AQP, i.e.,
since the risky portfolio is independent of the mean return m in the quadratic
problem, this same independence will be approximately true for the exact opti-
mal problem. Some care, however, has to be exercised in the interpretation
of this result. The above theorems demonstrated convergence for a particular
utility function and a particular mean constraint. If the separation theorem
holds, then, in effect, we can drop the mean constraint and, hopefully, still
obtain an approximation result that holds for the risky portfolio. But, it
should be clear that we cannot drop the mean constraint and simultaneously

retain the variation conditions of Lemma 1 and hope to cbtain an approximation

s et .
S ol O

pheorem.“ As” " gets large, in the preseﬁce of a riskless asset, it is pos-

sible to construct a portfblio with mean m whose risk approaches zero.
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If, say, m > p , the investor could borrow at the riskless rate (short the
riskless asset) and invest in the risky portfolio to obtain returns sufficiently
high as to make the risk-return tradeoff (between the systematic risk associated
with higher returns and nonsystematic risk) again meaningful regardless of the
choice of n . Even if there is no risk free asset, this same difficulty
arises since the investor can construct two portfolios of very low risk, one
of which has a greater mean than the other. If we drop the constraint on
the mean, then we must also drop the variation conditions of Lemma 1.

This point will be taken up below when we discuss capital market equilibrium,

For the moment we will content ourselves with the following results,

Theorem 6: 1If there is a riskless asset with a return of p and if

Ei =p+ rsi » then under the conditions of Lemma 1 other than (6) (b),

o} 1
lhe? - na® L0 ~0,

where aq is the portfolio of risky assets alone (obtained from separation), and

qP is the portfolio of risky assets chosen by an individual with a particular

utility function U(-). In additicn,

where ag

is the proportion of wealth placed in the quadratic portfolio
if that is the only risky choice available, and Qg is the porportion placed
in the optimal portfolio.

Proof: Notice first that it was necessary to put Ei = p+ rBi rather than
Ei = a + rBi , a #p to prevent the construction of a nearly riskless port-
folio with mean a #p . The proof of the theorem follows from an examination
of the return. TFor any choice of (ao,a) R where& a, is the portion of the

portfolio invested im risky assets’and ¢ With goe = 1 is the'risky port-

folio, the random return,
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X = (1 - « )P+ o (3)
= (L-a)p+ ol + @8+ od
= [ -a)o+ ap+ o (aB)r] + a (BT + o (d5)

= 0+ o (eB) [r+ 3] + q(ad) .

From Theorem 5, we know that ”ndo - naqH - OC%) -0 and

ap - q' - OCL) - 0 for any particular choice of m . If we substitute
o % n

a?  for QP in (8) , we can show that

nzYi o nzﬁi(aqs)zEfU"'(m + ?)32} + nz(ag)zE{U"'(m + ;52?} s

to 0(%) . Since o9 is independent of m , Lemma 1 assures that anyH
is continuous in m and since the total error term is obtained by operating
on Y by a linear functional uniformly bounded in n (see (10)), we need only
show that the optimal choice of m for the particular utility function eventual-
ly lies in a compact domain.

Consider the auxiliary problem

max E{U(p + a[r + 3])} .
a

We will assume that this has a solution 4a . Letting m = p+ ar , the princi-
ple of stochastic dominance asserts that R is inferior to

m + E[r + 3] =m+ {ﬁLi—E]E'. But since diversification will allow the eventual
convergence of ag » it is clear that io -~m +.[§—§;£]3'(a.s.), and there-
fore, that m - m . Consequently, for any € 2 0

» there exists N such

that n » N implies that m - & i <€ . .E.D.
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It should also be clear from an examination of the proof of Theorem 6
that the existence of a risk-free asset played no crucial role. The pivotal
assumption was that Ei = 0+ rBi for some p and r . In the absence of
a risk-free asset, 1t can be shown that in the mean-variance world all ef-
ficient portfolios will be a linear combination of the same two portfolios.
(This follows from the observation that the optimal portfoiio of (1) is simply
a linear combination of the two portfolios V-lE and V-le.) The portfolios
may be chosen to be uncorrelated with each other and (approximately) we may
choose one to be the minimum variance portfolioc with @B = 0 the "zero-beta"
portfolio.14 Letting the other portfolio be termed the '"market portfolio"
we can prove the following.

Theorem 7: If E = P+ rBi , then under the conditions of Lemma 1 other
than (6) (b) the optimal portfolio will be a linear combination of two port-
folios, one of which will approach the ''zero-beta" portfolio and the other of
which will approach the '"market'" portfolio to 0(1/n2) . Furthermore, as
in Theorem 6, the proportion of wealth put in the "market" portfolio in the
quadratic problem will converge to the exact proportion in the latter port-
folio to O(é) .

Proof: The proof is nearly identical to that of Theorem & and will be

omitted. Q.E.D.

Section IIT

We now turn to an examination of capital market theory under the assump-
tions given above on the market model.. The equilibrium theory of Lintner
{1965) and Sharpe (1964) rests primarily on'théitwin assumptions that all

investors in the market have identical subjective probability distributions
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(although this can be weakened (see Lintner [1971] and Ross [1971;3]) and that

returns are evaluated solely in terms of two moments, their means and covariances

(although the spread moment can easily be the stable Paretian ¥-parameter;
see, for example Fama [ 1965, 19711). The mean-variance assumption has been
much attacked as being valid only under the very restrictive conditions that
returns are normally distributed or that investors have quadratic utility
functions. We will demonstrate that the theorems of Section II enable us to
essentially drop the mean-variance assumption as necessary to the theory in
large markets.

At this stage it is useful to recall some results from mean-vafiance
capital market theory. Figure I depicts the familiar equilibrium situation in
the presence of a risk-free asset yielding a return of ¢ , The market port-

folio with return E, and risk O, is at the point of tangency with the market line.

In equilibrium if all individuals have identical anticipations, they will di-
vide their wealth between the riskless aséet and this single risky market port-
folio choosing some point on the market line. 1In equilibrium, then, the
contribution of security i to the market portfolio must simply be

. = pisi/Z P;S; » i.e., the ratio of the value of security 1

< s, pP.S, to

{ 11

the total market value ¥ p;s, , where s, = number of shares of security
i

i outstanding, and P; = price per share of security i . 1In addition, it

may be shown (see Sharpe [1970]) that in equilibrium

Ey =P = 5 CE -0, (11

where oim = covariance. between security i and the market security, and

2 _ . .
O, ~ variance of the market security.
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If the (anticipated) returns on securities are given by the single-factor

market model of Sectiom II,

S{i = Ej+ 8a+ €, | (3)
then (1l1) reduces to
-0 - 12
. . , 1 15
where the approximation is of 0(;) . In what follows we will prove that (5)

implies (11) and (12).

First, though, we will use (9) to derive the bagic equilibrium price
relation (12) in an intuitive fashion that demonstrates the crucial role played
by arbitrage, The arbitrage derivation lies at the heart of the robustness

of the price relation (12). Consider an arbitrary portfolio formed by combining

the risky assets:
oX = aF + (aB)d + af

= @qFE + (aﬁ)g

where the portfolio, <&> has been assumed to be sufficiently diversified that
the independent element of risk,x€, can be ignored in the sense of the previous
sections.16 Ignoring short sale restrictions, there is nothing to prevent

us from choosing @ so as to eliminate the systematic or factor risk as well,

i.e., we may set

o = o0, (13)

and the return on the portfolio

oX =~ R,



- 25 -

a risk-free return. We could not form such a portfolio only if 3 were
approximately a constant vector, but if 8 has sufficient variability we can

simultaneously satisfy (13) and the definitional constraint for portfolios,

L]

without straining the requirement that o be diverse enough to allow o€ ~ 0.
However, if it is possible to attain a (nearly) risk-free return of & E
and if there is a true risk-free asset yielding a return of p then simple

arbitrage will require that in market equilibrium
aE = g, (14)

If aE # p, then either the demand for risky securities if E>p or the supply
(short sale) if ®E<p would be excessive for equilibrium.

Furthermore, (14) must hold for all portfolios sufficiently diverse to
eliminate independent risk, ag, along with factor or systematic risk,g.

This will only occur if

. M op o+ .
E, 0 aﬁl.

where a is an arbitrary constant., By scaling & appropriately we can

normalize 8 so that amﬁ =1 and

E, = p + Bi (Em - p). (12)

One of the more remarkable features of (12), however, is that it will
hold even if there is no true rigk-free asset! Suppose that it is possible to
form a risk-free portfolio with return ~ oE ., Another portfolio can be formed

from the original one by adding the transactions vector, 1, wher;

(13)



and, therefore,

(x+M)e = 1 and (a+7)3 = 0.

The return on this alternative portfolio will be given by {(@+)E = QE+IE.
If a+llis also a well diversified portfolio so that (& +7) € ~ a,
this return will also be (nearly) risk-free and once again an arbitrage

situation arises if aF + 1E # oE , or, if TE # 0. To insure that this

holds for all alternative portfolios from (15) we must have
. = + o
E. a bﬁl

where a and b are constants, Summing over the market portfolio and normal-
izingcynﬁ = 1,we can eliminate one constant and obtain

, A R - a).
El a + ﬁl(Em )

The constant a can also be identified. If & is any '"zero-beta" portfolio,
i.e., ®3=0, then its return, ®E = a., Thus, all zero-beta portfolios have the
same expected return,

In Section IV these findings are generalized to m-factor models, but for
the moment we should stress that the arbitrage derivation of the market pricing
relation aside from being the simplest available derivation has the additional
virtue of implying the stability of the price relation in the strongest possible
sense, as a necessary condition for the prevention of arbitrarily large (sure)
returns. The above analysis, however, has largely been heuristic and to verify
the results in a rigorous manner we can appeal to the analysis of the previous

sections.
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To begin with we define the notion of an €-equilibrium. Thié concept
was first introduced in game theory and has recently been studied in
general equilibrium theory (see, e.g., Shapley and Shubik [1966] or Starr [1970]).
We will adopt the following definition.

Definition :

An €-equilibrium is defined as any set of prices {P "°"Pn> such that

1

”<D1’D2"°"Dn>“ < € where D, = the excess demand for asset i at prices

y .

In essence, an €-equilibrium is a set of asset prices (and, hence, ex-

(Pl,...,Pn
pected returns) with the property that they almost clear the market. 1If the
demand vector is continuous in the prices, them as € - 0 , any sequence of
€-equilibrium prices will converge to equilibrium prices (provided the latter

exist and assuming prices are suitably normalized). We now prove the following

formal theorem.

Theorem 8: 1If returns are subjectively viewed by investors as being generated

by the market model, then the security line relation

E,.-p = BE - p) (12)

where P is the return on the risk free asset, or equivalently,
2

O’-
Ei -p =_.;_.IE

m 1
In addition, all investors will pick the same risky portfolio to OCH) .

(Em = P) will represent an €-equilibrium with € - 0(%) .

Proof: The proof proceeds by comparing the market‘excess demand that actually
results when returns satisfy (12) with an artificial equilibrium that would
oceur if investors were forced to choose between the risk free asset and
the quadratically optimal market portfolio. The first step is to demonstrate

that the equilibrium values of risky assets V and v? will be approximately
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equal in the two situations. Letting = {l,...,m} index the investors in

the economy, Wv , the wealth (of agent v) at the prices implicit in (12),

W

g the dollar wealth placed at risk, and ab(\D , the proportion of wealth

placed at risk, we have that

= Wa
W Wv 0(\))

_ w
W o@dw) + =)

w
= 7al W (—
Wdyo(v) + wv(n )

q u wV
= W+ Wv(ﬁ—)
Now,
v = tw = zwl’
v v
v 2
and
T _ q
v = & Wv
N
Hence,
q = Y%
|[v-vi]| = | Z W, ()|
v
1
= VZvygp I3
= V; s
ﬁ\)
where yv = v and 1y = [I‘. Yvwv| is, therefore, a convex combination of

v
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the wv difference terms. At the extreme, then, @ will be bounded by

sup| w | for any n and since, from Theorem 6 sup| i8 bounded for
v ? v
n
each v , w < sup sup wvl <+%® . Of course, in practice, with diverse investors
v n

many of the terms of w will cancel and to the extent that wealth is not con-
centrated, we would expect ¢ to be considerably less than its bound,
s

up sup iwvﬁ

kY] r

Letting P;S;, represent the dollar value of the outstanding stock of

security i at the prices implicit in (12), we know from capital market theory
that at these prices the quadratic system is in equilibrium with demand equal

to supply, i.e., ang = pisi . Hence, the normed difference between the

actual demand at these prices and the supply is given by

- s = || Tuaw - vl

\V

=ywim%www)-ﬂﬁu

[V vy a @y - oy + v - vhHady
\Y]

K

V2 vy (M (a™ - oD + v - v [lled)
W

where we have made use of the triangle inequality. From Theorem 6 we have
la(v) - aq“ = av/nv » where a = is bounded in n , and oY = % where
b is also bounded in n . It follows that |

a

o - sl < v E Yvao(v)n;][ + vV %’-E

= Y (a+ wb)
n

n »
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where a 2% Yvab(v)av | is bounded by a similar argument as that which
showed w tg be bounded. Since V/n is bounded (note that v/n is bounded,
assuming the series of stocks of assets is bounded), HD - S” is of order

% - The assertion that all investors will pick identical portfolio to O(%)
now follows directly from Theorem 6 and the capital market separation theorem

in the quadratic case.

.E.D,

In the absence of a risk-free security the result obtained in Theorem

8 will still hold, except p must now be reinterpreted in the mean-variance
capital market theory to be the rate of return on a portfolio uncorrelated
with the market portfolio.l8 Theorem 9 asserts that equation (12) will hold
in equilibrium, in an approximate sense, not only in the absence of a risk-
free asset but also in general security markets given only identical subjective
probability distributions and a market model.

Theorem 9: If returns are subjectively viewed by investors as being gen-
erated by the market model, then even in the absence of a risk-free asset the

security line relation
E; =P = B.(E_ - p) (12)

will represent an €-equilibrium with € - 0(%) . In addition, all investors
will form their portfolios as linear combinations of the same two portfolios,
a market portfolio and a "zero-beta" portfolio, to 0(%)

Proof: Nearly identical to that of Theorem 8 with Theorem 7 used in place

of Theorem 6. The two portfolios are identified by an examination of (1);

see Black [1971] for details.

Q.E.D.
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The individual portfolio theorems contain the kernel behind the general
validity of the security line equilibrium equation (12) in large markets.
Essentially, if the security line relation did not approximately hold, then
individuals would be able to diversify away all risk and attain arbitrarily
large returns as the number of securities increased. This would be incompatible

with equilibrium.

IV. Generalizations

The theorems of the above sections were derived on the assumption that
returns were (ex ante) subjectively viewed as being generated by single-factor
market models. 1In general, though, it can be shown that the above results
remain valid whenever the number of factors is small relative to the number
of securities. The principal exceptions can best be illustrated with the
two-factor model. Suppose, first, that returns are generated by a market model
of the form
'fj = E ¥ le,gl + szgz + gj

If the relevant series <Ej> s <sjl> s (sz) , and (cj> are sufficiently
variable in a sense analogous to that of Lemma 1 yet appropriately bounded,
then it will still be the case that as n gets large the AQP solution ot
will approach the solution te the exact problem o’ . Furthermore, the level
of risk required to attain any given return m will approach zero as the
.‘.dis,tribution of (“81)31 + (aﬁz)’gz +ag-.0, (a.8.,) , and as ofF -m

. . o .
However, it will no longer be true that o =~ a? when the mean Series .
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is not sufficiently variable and this was the case which was relevant for
the study of capital market equilibrium, In quadratic equilibrium in the

capital market (with or without a riskless asset) the security line relation

2
g,
- = A= -
Ej P 5 (B, - 9 (16)
o
m
1 2,2 2 2 2 2
to 0(;) where V. = ci/(cl + 9,) and 9, ¥ 0] + 0, with (aﬁl) and

(aqz) normalized to unityglg%hus, the only difference between the single and
multiple factor cases is that the single volatility index is replaced by a

convex combination of the individual volatility indexes with weightsrproportional
to the variance of the index. Now consider the individual portfolioc problem

if (16) is satisfied. The investor will obtain a return of

R = ¥ P+ oF + (aBl)?s“l + (aB)T, + ot

H

P+ [(eB)v) + @By)y,] (B - o)

+ (B8] + (o8, + of

i

P+ L(B)Y, + @By)Y,] (B - o)
+ @B + (@B)F, , (a5,

for well diversified portfolios. As in the single-factor model the investor
is unable to eliminate systematic risk in equilibrium. In the single-factor

model, though, the mean return desired by the investor would also specify the
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level of systematic risk borne and the choice of the optimal risky portfolio
would simply be governed (for large n ) by the desire to eliminate the un-
systematic risk component. In the two (or many) factor model the specification
of a mean return level (as the outcome of the exact expected utility maximi-
zation) constrains Vl(aﬂl) + Yé(a52) » but the final choice of (aﬁl) and
(QBZ) will depend upon the investor's risk preferences and will not simply

be guided by the relation between 9y and Oy as in the minimum variance
Problem. As a consequence, even with large numbers of securities and even

in the presence of a risk-free asset, investors will not in general purchase
the same portfolio of risky assets. Each investor will now act, for large

n , approximately to minimize the nonsystematic risk aVo , subject to two
where m, and m, emerge from his

constraints aBl = m and aBZ = m

1 2 1 2
risk attitudes concerning 31 and gé . The solution to the problem will
take the form
-1 -1 -1
@ = AV Bl) + KZ(V 52) + 6{V "e). (18)

where hl s Az » and 8 are Lagrange multipliers. Equation (18) can be
interpreted to mean that optimal portfolios will be formed by individuals
as linear combinations of two portfolios taken with borrowing or lending at

the riskless rate p (or the return on the minimum variance, "zero-beta"

aBl = asz = 0 portfolio in the absence of a riskless asset). By a

straight-forward extension of the arbitrage argument of Section IIT or, more
formally, of Theorems 6, 7, 8, and 9, it can again be shown that the
security line (17) will represent an €-equilibrium in the capital market of

*

1 : .
OCH) » although the equilibrium Yi ‘weights need not correspond to (ci/oﬁ + Oi).
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For the general case, when the number of factors { is considerably

less than the number of securities n , the security line equation
Ei. - p = (Ylali + e YﬂtB{,i)(Em - p) 3

where Yy + ...+ Yy = 1(\/j 2 0) will obtain. The return Em is again the
return on a market portfolio with weights proportional to the value shares
of the individual securities, but the market portfolioc no longer enjoys the
separation property, and the capital market line for efficient portfolios no

. 20
longer exists,

V. Summary and Conclusions

The above sections have shown that neither the assumption that returns
are normally distributed nor the assumption that utility functioms are quadratic
is critical to the validity of either the separation theorem or the mean-
variance capital market equilibrium model. 1In a single-factor model with a
large number of securities, individual portfolio behavior was unaltered, and
the equilibrium theory remained intact for general factor models. In parti-
cular, as long as the degree of dependence between anticipated asset returns
is not too high, the security line equation of the capital market model will
become an increasingly good approximation to equilibrium as the number of
securities becomes large (relative to the number of factors in the market
model). In a world with only 1,000 securities (and a single-factor market
model), the security line equation would depart from an equilibrium at most
to the order of 1/1000 of the outstanding value of each security, and, in

general, the approximation would be considerably better. This fundamental
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price equation emerges as a consequence of simple portfolio arbitrage
possibilities and it is this viewpoint that accounts for its robustness to

alternative specifications of the underlying model.



Appendix

Theorem 1: If <Oj> and <Ej> are uniformly bounded, <Bn> is uniformly

bounded away from zero, and

Ely, | yyreeen v 3 =0, A(1)
then
oy -~ 0, (a.s.) )
Proof:

Condition (1) is simply a generalization of the notion of independence
and is equivalent to the assertion that the partial sums Sn = ¥y + ... + Y2
form a strict martingale. It is also easy to show that the covariance matrix
Vn is diagonal under (1), The need for the boundedness conditions will
become apparent in the course of the proof.

Let the bounds be given by

B 2b>0,
n

A(2)
a Egng-]')(),

and

]Ej | < a<+e,

From (3) and (4) we have



and upon applying some algebra we obtain
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Il
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e
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Q
e
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where
I -2
¢E = Ei(A ; chj - m)
noJ
+m—§— TEg 2 -i— EEz.c'.z
n j J 1] noj 171

I

E,(E - m) + nE - (Bn+E2)

It

(Ei - E)(E - m) - Bn ;

=

n
= '},;— z E.cr-.2
n j=1 33

By the bounds on (Ej) and <Bn> we have

-8 -b = mi =C ,

where

c=Max {[¥a -y, |k@-3) (a-3m [} D

From the assumption that <°j> is uniformly bounded we have

-2
e. 1 9% £, 1

('f);sKn—s(;);;,

A(3)

A(4)



and combining this with A(2), A(3), and A(4) yields

-2
of | | Co; /8B |

A

[(c + a) EE %

Ll

k
n

We can now apply a well-known statement of the strong law of large numbers

~ = q\‘ .
(see Loeve, p. 387). Let Zni = noyy, o Since

1 n

n

2 3 q,2 2
7 I Bz} = L @)
n i=1 i=1

it follows from the limit theorem that

nn

W

m
LI e =
R

<9

=3 P

- 0, (a.s8.)

Q.E.D.



Lemma 1:
If we assume that <Bj> , <Ej3>, and <Uj>' are bounded as in Theorem 1,
that e'V-lE, e’V-1;3, 5'V-1E , ﬁ'V-IB , and e'v'le are of the same order and

that there exist positive constants a and b such that

vl g vy (evile) - (v 82} = acevley ,  (6)(a)

and
B= (e le)2{ (2'M Iy (e le) - (e IE)Z} 2 b, (6)(b)
then
1
q ad —_—) =
ad ~ 0()~ 0
and
a38-0d -0
= .
Proof:

The proof is similar to that of Theorem 1, and we will do in detail only
those portions that are distinct. Since (cj) is bounded, (e'ane) —'OCL)
n

and we first must show that (e'M-le)-l ..0(1) + Observe that
n

M-l

vl omvlgeyt

where

3
1]

oZ/I1 + o2 (B'v 8]

(1 The bounds are obtained by considering the extreme values of the form
(B; - E)(E - m) and allowing both E, and E to take on any values between
-a, and +a . Tighter bounds could beé found by explicitly considering the
<cj) series, but the effort would not warrant the reward.



Hence, from (6) (a},
e'M e = e'vl - (o1 + czs'v'ls))v'leslv'l] e

= (1+ GZB'V-ls)-l{e'V-le) + oz[(B'V_lB)(e'V-le)

-1 2
- (e'v "B}
— 2, ,o-1.
> 1+ gza(e Yl e) (e'V—le)
1+ 5 (B'V "B _
(1 + Sfacetv )] -1
> SRS (e'V "e)
1+ cc(e'V "e)

—Uza -1
2z | — (e'V "e) ,
14+ ¢cec

where ¢ = sup [(B'V-ls)/(e'v-le)] <+4+® by assumption.
n

From (2), as in Theorem 1, we have

-A = AB,

where now

b
1]

(e'M-le) R

and using this result we can derive the formula analogous to A(3),

A=5

A(S)
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where
9, = (ai - bi E) (E - m) - biB s
E = (e'M-le)hle'M-lE R
-1
]
a; = B -8By ~§'V - A
g + B'V B
and
'y e
by = 1B =
o+ B'V "B

Now, since <Ei> and <Bi> are bounded and since (B'VHIE) and (B'V-le)
are assumed to be of no greater order than B'V-IB s (ai) , and <bi> will

also be (uniformly) bounded. Similarly,

1

e'™ E = e'V E - ﬂ(e'v'IB) (B'V'IE)

-1, (e (gvTle)
E ) 1
(¢ "+ B'V "B

Il

ey

3

and the bounds on <Ej> assure that this term is of no greater order than
B'V-lB and that E is, therefore, aliso bounded. It follows that mi/B is
bounded and that the order of ag is determined solely by [GEZ/A] . But
since we have shown that e'M-le ] [oza/l + czc] (e'V-le) and since (oj)
is bounded above and away from zero, ug - OC%) -0 .

The proof that the component of systematic risk ¢o'B _,0(%) -0 is

straightforward. From A(5)



—_ ! -1 h1
g = 3= BV HE - w@E - |
c + B'V B
1 -1
- Ee + EB _2 v E -1 )
g + 8v B

V-1
- Be + BB fv ~—1 1
g + g'V B

re, =1
- 5@ -w @vE- vl - | SEE

-2
) l(B'V-le) a- ﬁ'V-lB )
A 0-2 + B,V—IB

%+ pvls
Since A = e‘m-le > [czafl + czc] (e'V-le) and since B 2 b and E is bounded,

the first term is of the order of (1 - [B'V-lﬁfc’2 + B'V-ls]) and similarly,
the boundedness of (B'V-le)/(e'v_le) assures that the second term, too, is

of the same order. However,

-1 -2
1 - __zl!—i.i' = T “0(':'1)“0'
g+ B'V B o + B'v 8

Q.E.D.

Lemma 2: The optimal solution ¢ and @°3 are bounded of order 1/n% i.e

b bl }

|| n¥ o]
and

‘n%ofﬁl are bounded.

Proof: By'gﬁylor's theorem,

4

B[] = Um + E[U° @ (@®)F + «D] + E{oT(a + ) (@B + 0],
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or

U(m) - E{U@X)} = - 2E{U'"(m + Y)((@B)T + ’é‘))z} ,

where

YI0,(@B)F + o7 .

q

1
From Lemma 1, o« -‘O(;) and quﬁ) - 0(%) » and Lemma 2A in the appendix thus

implies that
Um) - E{U@%)) _.0(%)

Ry 1
Assume now, contrary to the porposition that ”nﬁde or |n2&08 | are un-

bounded. By the same reasoning as in the appendix
- BnE(U @+ PDT + *D Y
will also be unbounded and
n[U(m) - E{U(@°%)}]

2
will diverge.( ) It follows that there will exist some N such that for

n >N

E{U(e%X)} > EUu@)]} ,

(o}
contradicting the optimality of o .

Q.E.D.

(Z)The reader need only observe that since BB' is positive semi-definite
and since the lemma implies that orthogonal cross-terms are negligible,

- 3E {3 (m + ) (@°®)F + B )n
- @~ B (2 + 7)) 88
- AR (W' Mm + T)Te Y D)0

> (- 32 {N" (@ + ) @°¥)?})n,



Lemma 1A: If € 1is a mean zero random variable and H(:) is a twice dif-
ferentiable function, then
€ 1
E{H(n)é} - 0()
for large n .

Proof: By Taylor's theorem

2
) = HO) +EO) S+1H( S
n

=1 )

H(

where yG[O,%} . Hence,

1 &

BEE} = E{HO) + B0 + 2 v (0S5 €
n
c o S sk €
n T 272 Y '
Let
S = s |2 |
y§0,5]

Clearly, (V%) ﬁ(%) is a declining function of n ; hence, for n> 1

ﬁ(%) < H(E)

and

which diverges if ”ni&ou is unbounded. Similarly, GIOB)zn must also be
bounded to prevent divergence.
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B 0 () €7 |

= 1 4 3
’ 'J\_ EH (y)GdFEl

o

1A

- 3 o = 3
; f_’m ) € ar, + jo A €) €dF,

in

Note that ¢ 1is independent of n , and we will assume that H(-) 1s chosen

50 as to make c¢ < o ., It follows that
€ 02 1 1 3
|E{H(D) €} - u'(0) &= | = ?|E{~§H"(y)€ 3
c
= —E‘,
n

which proves the theorem, Q. E. D.

The proofs of the theorems in the text rely on an extension of Lemma 1A

that we will now prove.

Lermma 2A: Let <Ei’€j’ek> be mean zero random variables that are independent

if their subscripts differ., If (ai,aj,ak) are contants and H(+) is suf-

ficiently continuously differentiable, then

. - . ..
E{H(—ie + i ) G-E-] . constant if i=j
n i n j i~ 1
0(—2) if i
n

constant if i=j=k

o, o, ec
E{H(El Ei + EJ.Ej + EE Ek) Eiejek} - 0(%) if only two are identical

O(lg) if all three differ.
33
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Proof: We will treat the three cases in succession. If i=j=k, then
o 3 3
E(HEE €) €7} - woE{e’),

3
which is a constant independent of n . If two differ, then we must consider
the Taylor expansion

¥ %
E{R(T € + 37 ¢) 6162}

22 &
E(ROE G+ 2O ¢ + 2 ¢ &)

1 .., 1 % 2
+EG DI + =2 617 &)

el 2
- O E{gE)
1 1 232

23 . 2 4
t a6 T oh68lY

%

o
where yeg [0, 61 + Egez] . As in the proof of Lemma 1A we can bound the final

n

term and obtain

o
BRGE € + 22 ) €€) -0y

n

Finally, if all three differ, we have

3If E{€3} = 0 ,then Temma X would imply that E{H(%)E)ES} - 0(-[1;) -0 .



A-12

Q’l Q’z Q’B
E{R( € + 77 6 + = €)€/66)]

il % 3
T BHOEGE) + EHOGE ¢+ 7 6 ¢ 7 565 ¢)

o o o
1 1 2 3 2
+ E{E H”(O)(‘a‘" 61+E—- €2+'[-1— 63) 616263}

1 , il ) %3 3
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where YE[O’(E_ €, + = 62 + o 63)] and a and b are bounded by arguments
identical to those given above. The proof of the two-variable case is now

obvious and will be omitted.
Q.E.D.

Notice that the proef of the above lemma and, hence, of the theorems
in the text requires only that the random variables be mean independent, i.e.,

E{Ei < € > } =0, but for ease of exposition we have sacrificed
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the slight increase in generality. In addition, note that Lemma 24 generalizes
in a straightforward fashion to the case where <Qi’aj’ak> lies in a bounded
domain or where the base order is 1/nB rather than 1/n . Finally, it should be

clear that Lemme 2A generalizes in an obvious fashion to the case of m

random variables (El,...,em) .



Footnotes
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1Samuelson [1970] has verified an approximation of this sort for the

case where the range of the random variables converges to zero in an appropriate
limiting process.

2The constraint & 20 is also often imposed to prevent short sales,
but we will not worry about this restriction., Its imposition would complicate
the derivation of our theorems and in some cases would weaken the error bounds
obtained but would not substantially alter the main conclusions.

Also, throughout we will assume that the utility function is sufficiently
regular to permit the proofs to go through (this will generally mean that it
must be continuously differentiable of some finite order).

3As n grows the dimension of ao and of increases, and the mathematics
requires that we view them as elements of an infinite dimensional (sequence)
space. Any of the 4. norms, for example, would now do but the &a uniform
metric, although the weakest, is also one of the most intuitive. We will occasional-
ly indicate below where the choice of a norm will make an important difference.

4In what follows we will always assume that the random variables possess
second moments. This restriction can be removed and the results easily ex-
tended to the case where absolute moments above the first exist; however, the
AQP solution will be the solution to an o-moment problem (see Fama [1971])
as in the stable Paretian theory.

51f Vy, 1is singular, V;I will denote the generalized inverse of Vn .
The o portfolio is now indeterminate, and many choices will be indifferent
solutions.

6This is the same as almost everywhere (a.e.) convergence (see Loeve
{1963]1) and implies weak convergence. In particular, it implies that for every
concave U(+), E{U(e%)} L u(o) .

la) to mean that Hnakn” is

bounded. Notice that this implies that for aEy B <o, |Jn X “ =0 and
1 n

7
We will use the order notation Xn - 0¢

that Xn - 0 S) . Some simple algebra is also useful:
n .
. . 1 1 1
i) if X -~ 0(— d = 0(= -
(1) N (na) an Yn (n ) , then XnYn O(dy+5)

(where Xn and Y~ are scalars) , and
‘s , 1
(i1) if Xn - 0(—) and Yn .aO(L) and o> B, then
n® n
X +Y 00
n n — n -



Finally, we will say two sequences <Xn> and (Yé> are of the same order

if the sequence <’Xn/Yn |) is bounded above and away from zero.

This condition can be weakened. For gxample, the result is unaffected
if for some subsequence of the securities g£ /A 40(1/n) . All wealth would
then be concentrated in this subsequence. o

9Getting ahead of the story a bit, since the nature of §, and ¥
is arbitrary, it is clear that this term will not, in general, Stochastically
dominate all other portfolios and there will exist utility functions which
will yield different optimal portfolios.

10
There is no loss of generality in specifying % to have zero mean
since its mean return is already incorporated in E

The slash over a vector indicates its transpose, and we will continue
to use this notation only when the form is ambiguous.

2For large n , thel E vector will act like a constant vector plus r8
and B -0 as (e'V-le) .

13 . .
This is one of those cases where the norm used is critical. For example,

the approximation ng° ~ noa? is not generally valid in the {1 norm

Kl =2 Ix; |

1

14
This point has also been made by Fischer Black [1971] and the reader

is referred to Black's paper for a detailed examination of the mean-variance
case,

5 . 2 o~ 2 2 2
1 c = =
Simply note that im = Cov (QX,Xi) S?B)ﬁidé + Qici e Bicﬁ where

without loss of generality we may normalize § so as to set ¢f =1,

16If there is no independent element of risk, i.e., EiEE 0, )
then the analysis which follows is exact and independent of n (Z2), The model
may now be considered to be isomorphic to a degenerate state-space model,
however, the argument is more general than that of Beja [1971] , say, since we
have no need for markets in contingent claims. This isomorphism between factor

and state-space models is of interest in its own right and will be the subject
of another paper.



17This assumes the existence of no capital assets yielding the risk free
return p and that all assets are included
under consideration.
ternative situation.

in the universe of securities
The proof can easily be modified to handle the al-

18See Fischer Black [1971],

19In a number of interesting cases this particular normalization will not be
possible., If, for example, one of the portfolios has the "zero-beta" property,
@By = 0, we cannot normalize, The results which follow will then be modifie
in a straightforward fashion,

20If the number of factors 4 — = , but n grows Sufficiegﬁly more rap%dly,
I would conjecture that the equilibrium weights would approach i/(O% +...+c{).
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