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I. Introduction

Since Markowitz developed the portfolio analysis model
[22] and the Tobin-Sharpe~Lintner-Fama {26, 23, 17, 6] mean-
variance capital market theory based on it evolved, there have
been some suggestions that the third and possibly even higher
order statistical moments should also be considered in the
analysis [1, 2, 12, 13, 19, 20, 27]. These suggestions have
been strengthened recently by empirical work and math deriva-

tions which have been published.

In particular, two recent studies motivated this in-
guiry into the effects of higher order statistical moments
on investors' decisions.l First, Arditti published two
empirical studies which both concluded that third moments
tend to have significant inverse relations with the average
asset's yield [1, 2]. Second, Jean derived some mathematical
models which show how higher order moments might affect asset

prices in equilibrium [13].



This paper analyzes the merit of these suggestions
to consider higher order statistical moments. Then, empiri-
cal data for 119 mutual funds and 788 New York Stock Exchange
(NYSE) stocks is examined: it shows how higher order moments
have been historically related to average rates of return.
The new data presented here suggests tentative conclusions
about the effects of higher order moments and about those

models which suggest their use.

IT. Arditti's Data on Third Moments

Arditti has published two studies which both indicate
that third statistical moments may have a significant inverse
relation to the average returns investors demand to induce them
to buy risky market assets. His first study used data for all
the stocks in the Standard and Poor's Composite Index over the
1946-63 period [2]. Regressing the standard deviation (denoted

02) and skewness (denoted S) onto the geometric mean return2



(denoted g) yvielded Arditti's equation (2.1) below

g; = .1044 + .4221(52.l - .16778i Arditti's egn. (2.1)

(5.0} (-3.8)
From equation (2.1) Arditti concluded that "the [significant]
negative coefficient of the skewness variable means that the
market likes positive skewness" [2, p. 256].
Arditti's second study was more forceful in asserting that
the third moment was a primary factor in investor decisions [17.
This study used Sharpe's data for 34 mutual funds from the 1954-

63 period [24]. Arditti's regression equation (1) is shown below.

— 3
r. = .0454 + .5760c_., - 7.059_. R = .7391
1 21 31
(.0697) (-3.2102) Arditti's egn. (1)

Arditti's equation {1l) suggest that the wvariance has an insignificant

effect on the average return demanded by investors. But, the
third moment seems to weigh heavily in portfolio investment con-
siderations.

Arditti's data may come as a surprise to some analysts who
have been working primarily with the mean and variance models and

had decided not to work with models involving higher order moments.

Closer scrutiny of Arditti's work will lessen any such shock how-



ever. Arxditti's results should be viewed with a bit of skepticism
for several reasons. First of all, in the same study [2] in

which he published his equation (2.1) shown above, Arditti pub-
lished another regression which was similar to equation (2.1) except
that it contained no industry dummy variable. This other regression
yielded an insignificant regression coefficient for the skewness
variable. The skewness effects shown in equation (2.1) are so

weak they were washed out by industry effects.

A second reason Arditti's implications zhouldn't be taken
too literally is that the sample underlying his regression equation
(1) is small and may be unrepresentative with respect to skewness.
Monthly data for 32 of the 34 portfolios Arditti used to obtain
his regression equation (1) above (plus data on many other funds
too) was gathered independently at the Wharton School [l11l] for
the period from Jan. 1960 to June 1968.3 Since this sample
data overlaps the data Arditti used for the 4 years from 1960 to
1963 inclusive, one would suspect that statistics for the 2 sam-
ples should be similar. However, such was not the case. Arditti
reported [1, page 911] that the average skewness of his 34 mutual
funds was positive. However, the Wharton School data for 32 of
Arditti's 34 funds shows that all 32 had negative skewness.4
In fact, the Wharton School data for 119 mutual funds from Jan-
uary 1960 to June 1968 used for this and other studies [11] has

a total of only 4 mutual funds with positive skewness.



The point of all this is that Arditti's two studies and his
regressions (2.1) and (1) above are not conclusive and possi-

bly not even indicative of a significant market tendency.

ITIT. Jean's Models

Jean derived math models which explicitly relate the market
risk premiums [that is, the excess return over the riskless rate
of interest] for portfolios and individual assets to the higher

order moments of their probability distributions.

IIT A. Derivation of the Models

Jean's model is based on the same assumptions Sharpe and
others have made [9, pp. 111-113]. If the first n moments of
the probability distribution of returns are considered, the linear
locus of portfolios (denotes e) which may be generated by borrow-
ing or lending at the riskless rate R and placing any remaining

funds in portfolio m is defined by the series of equations (1).

E(re) = £ E(rm) + (1-f)R (1a)
Toe = £ T om (1b)
O3e = £ ¢3m (1c)
O4e = £ C4m (%d)
5 = f ¢ {In)

i a
ne nm



where f is the fraction of the equity of the portfolio made of
assets R and m which is invested in m; E(rm) is the expected rate
of return from the portfolio denoted by m; 9 om is the

standard deviation of the rates of return from portfolio m, and

E(ri) and g are the expected return and standard deviation

2i

.th . . . . t
of the it efficient portfolio, respectively; and, “he LS the n h

root of the nth statistical moment for portfolio e.

The slope of the linear opportunity locus for the portfolios
denoted e in the direction of o in n-dimensional moment space
{that is, in [E(r),32,03,...cn] space} is shown in equation (2).

E(rm) - R

3[E(r) -~ R]/aone = (2)

a
nm

Equation (2} may be derived by substituting equation (In) into
(1a), solving for the risk premium, and taking the partial de-
rivative indicated.
. . th |, .. | .
Jean tried to derive the i individual assets' risk pre-
. th . L . .
mium for the n moment -~ when n is any positive integer. Using
the same approach as Sharpe [23] and Fama [6], Jean worked with
a hypothetical portfolio (which we will denote h) composed of
. .th |

the portfolio m and the i risky asset. He assumed that some
fraction b of the equity of this portfolio is invested in the ith
asset and that the remainder (1-b), is invested in m.

As the fraction b is varied in the hypothetical portfolio

denoted h, a locus of risk-return pairs -- that is, {onh,E(rh)}



pairs -- are traced out which are described by equation (3).

Equation (3) is obtained by taking the indicated derivatives

from the formula for the portfolio's expected return and the

th th oL )
formula for the n root of the n statistical moment.

dE(rh) ) dE(rh) . db 3)
do oh db do oh
At b=0 portfolio m is attained -- that is, h = m at b = 0. Eval-

uating equation (3) at b=0 vields equation (4).

n-1
dE(rh) _ (onm) {E(ri) - E(rm)} )
% 1n B(@,d "™ - )"
b=0
. . . N . th
di is a random variable representing the deviation of the 1
assets return from its expected return, di = [ri - E(ri)]:

dm is analogously defined for portfolio m. Equating the marginal
rate of transformation of risk for return which the investor can
create for himself by varying b {that is, equation (4)} to the
comparable rate of substitution available in the market. {that is,
equation (2)} yields an equality which should prevail in equilibrium.

This equilibrium condition may be solved to yield equation (5).

E(ri) - R

I
=
o
jol

e



, i , } , , .th
Equation (5) is the risk premium associated with the i asset's
th C 6 . . .
n statistical moment. The right-hand side (rhs) of this equa-
tion is the product of two factors. The first factor on the rhs
is the slope of efficient frontier in the direction of the nth
moment. The second factor on the right-hand side of equation ({5)
. . . .th th
is the contribution of the i asset to the n moment of an
efficient portfolio -- it measures the interaction of the ith
asset with portfolio m.
The seeming generality of Jean's findings are made apparent
by noting that Sharpe's Capital Market Line [23,9] is merely a
special case of equations (la) and (lb) solved simultaneously for

the portfolio's expected return. And, Sharpe's Security Market Line

[9] is just a special case of equation (5) when n=2.

ITT B. Portfolio m Undefined in Jean's Model

Problems exist with the mathematical foundation of Jean's
model because the desirable portfolio m is not a unigue portfolio
(like Fama's market portfolio [6]}, nor is it even one particular
portfolio. There are, in fact, numerous desirable portfolios
which could be denoted m. For example, in the three dimensional

[93,0 +E(r)] space shown in Figure 1 the opportunity set of all

2

possible investments is shown as a cone with its vertex at the

riskless rate R.
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FIGURE I

The Opportunity Set of Investments in [03,0
Space Is Roughly Cone Shaped

E(r)

2.E(r)]

10y
The portfolios which will be most desirable to risk-averters

are those which will maximize § at each level of skewness, that is,

those defined in equation (7).

E(r ) - R‘
max B =—01 (7)
o
2m
O 4 |03

By wvarying 04 while maximizing & the top half of the cone in
Figure 1 will be traced out. This top half of the cone is the

efficient frontier in [03:0 +E(r)] space. The main point, how-

2

ever, is that there will be a different portfolio m which has the

maximum 8 for each T4- Thus, there will be as many different

portfolios denoted m as there are values of Cg- Only in the special

case when oy = 0 for all assets will portfolio m be Fama's unique

market portfolio.



Since portfolio m is not unique in Jean's model (nor is it
even defined), then all the statistics and opportunity loci based
on m are not defined either. For example, the contributions to
the various moments, E(did;)’ shown in equation (5) are not
defined for models based on three or more moments. In fact,
except for Sharpe's original two parameter models, none of

Jean's asset pricing models are completely specified.

IIT C. Some of Investor's Preferences Vary With Sign of opp

Another weakness of Jean's models is that it implies that
investor's preferences with respect to the odd-numbered moments
varies arbitrarily with the sign of the odd-numbered moments
for the market portfolio:; this is true for both the portfolio
pricing model (2) and the asset pricing model (5). Consider,
for example, the third moment. If %am is positive, then equa-
tions (2) and (5) imply that investors prefer negatively skewed
probability distributions to positively skewed distributions.
This implication is difficult to take seriously. The sign of
g

3m

for other assets.

should not have any dramatic impact on investor's preferences
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IV. Empirical Tests

IV A. Introduction to the Empirical Tests

In spite of some problems which have been pinpointed
above, the mounting body of theoretical and empirical evidence
points toward the need to consider more fully the possible effects
of higher order moments on investor's decisions. Therefore, an
analysis of empirical data was undertaken.

For the empirical tests reported here historical data for
788 individual common stocks listed on the New York Stock Exchange
and 119 mutual funds were used.7 Data for all 907 assets were
gathered from an 8-1/2 year sample period. Thirty-four quar-
terly rates of return from January 1960 to June 1968 inclusive
were calculated with dividends and cash disbursements reinvested

and compounded.



th th D
The n root of the n statistical moment was calculated
according to equation (8) from historical fregquency distribu-

tions of T=34 quarterly rates of return for the ith asset.

1 T -
o . = [(——} s (. - r.)“] (8)
T — 1

— _ ‘ t
£y denotes the arithmetic average of the T returns for the i h

asset.
, th th N

Jean's models suggest that the n root of the n statisti-
cal moment may have linear additive effects on the mean return

. . . th th
(to a first approximation). Therefore, the n root of the n
moment is used as the independent variable rather than the raw
statistical moments or normalized statistical moments (namely,

. 9
skewness and kurtosis).
. . th . .

The contribution to the n moment risk factor [that is,

the independent variable in Jean's equation(5}} was calculated

with T=34 historical rates of return according to equation (9)

th
below. Contribution to the n moment risk factor equals

n-1 1 T - n-1

E(didm ) =[(§) by (r.lt - ri) (rmt - rm) J (9)
t=1

The ILorie-Fisher Combination Link Investment Relative with divi-

dends reinvested {8] was used as a surrogate for the market port-

folio, denoted m. Of course, as explained above, Jean's model

presumes a seperate portfolio m for each level of skewness. How-



ever, for empirical tests it is quite expeditious to use only one
portfolio m. Since the numerous portfolios defined by equation
(7) which could be denoted portfolio m will all be highly positive-
ly correlated, and, the range of skewness they encompass is not very
broad,lo this simplification should not introduce such gross biases
as to preclude its use in testing Jean's model {5).

Only the first four statistical moments were considered in
this study. The meanings of the fifth and higher order moments
are not generally understood. And, since there are no cogent
reasons to suspect that the fifth and higher order moments con-
tain valuable information, they were not examined.

The geometric mean return (g) defined in equation (10} was

11
used as a surrogate for expected returns.

g = 7Y/ () (). (Ter,,) | - 1.0 (10)

4)

IV B. The Data For the Portfolio Model

The hypothesis that a portfolio's expected rate of return
or risk premium is a function of its second, third and fourth

moments is represented symbolically by equation (11).

3 4

O35+ Tg3) (11)

2

The simplest and most plausible form which this function may be

expected to assume is the linear additive form shown in equation

(12b) .12
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E(ri} = R+ bso,. b303i + b4ﬁ4i (12Db)

Table 1 shows the regressions, their t statistics and co-
- . . —2 .. .
efficients of determination (R") for empirical estimates of

equation (12b) using the sample of 119 mutual funds.l3

Table 1
Regressions of Higher Order Statistical Moments

Onto Their Mean Returns for 119 Mutual Funds

Regres- —
sion No. Empirical Estimates of Egquation (12b) R
1 gri = .00897 + .2171402i . 380
(8.47)
2 gri = .00955 + .2437302i + .0403203i .395
(8.11) (1.66)
3 gr., = .00928+.51032¢..+.0061%y_.~-.20020c, . .409
3 (3.21) %% (0.19) 3t (c1.7)H

All t-values are in parentheses.

Unlike Arditti's data, the statistics in Table 1 suggest
that only the first two moments have a gsignificant relationship.
The third moment is clearly insignificant for this sample.

The coefficient for the third moment alsc has the wrong sign.
And, the fourth moment's regression coefficient is insignifi-
cant, but noteworthy nevertheless., This data implies that
the mean-variance portfolio models do not waste significant

. . . 1
information contained in higher order moments, >
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IV C. Statistics for Jean's Contribution to Moments Model.

Jean's equation (5) hypothesizes a linear relationship
between the assets' contributions to their higher order moments (for
example, the covariance's contribution to the second moment) and
their mean returns. Equation (13) depicts this model symbolically

in a general form.

2 3
E(ri) = h[E(didm), E(didm), E(didm)] (13)

. 16 . . .
The most obvious form of equation (13) to test is the linear

additive form shown as equation (l4a}.
E{(r.,) = R + b _E(d.d ) + b _E(a d2 + b, (4 d3 (14a)
ti) T 27 4% % Bl d) 3(d;9,) a

Tables 2 and 3 show the statistics obtained by estimating
equation (l4a) with the data for the 119 mutual funds and the 788
NYSE stocks, respectively.

The data in Table II for the portfolios provides only limit-
ed support for Jean's contribution to higher order moments model
(5). However, this lack of significant results is not conclusive
in view of the simplification employed by using only one port-
folio for portfolio m as explained above. The common stock data
shown in Table III provides even less support for equation (5).

Considering the unsuspected positive signs on some of the

regression coefficients for E(didi); the different signs on the



- 16 -

Table II
Regression of Mean Returns Onto Higher Order Moment

Rigsk Contribution Factors for 119 Mutual Funds

Regres- —
sion No. Empirical Estimates of Equation (5) R
4 g, = .00781 + 2,96082 E(&‘dm) .44
* (9.63) *
5 J; = .00806+4.1626 E(didm)+22'39907 E(d.dm2) .5l6
(10.28) (4.20)
2
6 g, = .00829+7.84999 E(didm)~8.36678 E(didm )y -
(4.31) (-.09)
3
127.02388 E(d.d )
(=2.07) o .53
Table IIX
Regressions of Mean Returns Onto Higher Order Moment Risk
Contribution Factors for 788 Individual Common Stocks
Regres- —>
sion No. Empirical Estimates of Equation (5)
7 gi = .01932 + 1.09841 E(d.dm) .028
(4.81)
8 g; = .01949 + 1.09313 E(didm) + .46867 E(didmz) .028
(4.75) (0.196)
2
9 gi = ,01961 + 1.27447 E(didm) + 0.25378 E(d.dm )
(2.02) (0.10)
3

- 6.01987 E{d.d )
(-=0.31) o .028
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E(d.d3) coefficient in regressions 6 and 9, and, the weak
im
17
results shown in Table III, only the two parameter models
previously suggested by Sharpe [23] seem to enjoy statisti-

cal support.
Conclusions

The suggestions that more than just the first two moments
should be considered in asset pricing models seem to lack strong
empirical grounds or a rigorous model to support them. Arditti's
regression results are suspect. And, Jean's asset pricing models
based on several higher order moments are not fully developed.
Furthermore, the empirical tests presented in Tables I, II and
ITT did not attest to the significance of the third and fourth
statistical moments. The two parameter models developed by
Sharpe and others appear to be the most well-developed and the
most well supported by empirical data of the models existing at

the present.
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FOOTNOTES

*
Assistant Professor of Finance, University of Pennsylvania,

Philadelphia. This research was supported by a grant from the
Rodney L. White Center for Financial Research. This draft should
not be quoted without the author's permission.

In addition to these more recent suggestions mentioned above,
there have been other studies which also implied that more than on-
ly the mean and variance of assets' probability distributions of re-
turns should be considered [10,21].

The classic Friedman-Savage utility study suggests a fourth
order utility function [10]. The expected utility of this fourth
degree utility of wealth function can be shown to be a function of
the first four moments about the origin (which in turn determine
the first four statistical moments) of the probability distribu-~
tion of terminal wealth or rates of return. (See footnote 12).

The stochastic dominance literature does not suggest the
use of higher order moments per se [3, 12, 19, 20, 27]. Instead
it shows that basing investment decisions on only the mean and var-
iance can sometimes lead to the selection of efficient assets
which are less desirable than some inefficient assets. This proves
that some useful information about the probability distribution
is wasted if only the mean and variance are considered. Examining
higher order moments may give some insight into the question of
how much valuable information is contained in these more esoteric
aspects of the probability distribution.

2Regressing higher order moments onto the geometric mean
return rather than the arithmetic mean return results in lower
coefficients of determination. However, it has been this writer's
experience that conclusions based on the t statistics of regress-
ions which differ only in their use of the geometric and arithmetic
means as the independent variable usually do not differ. There-
fore, Arditti's regression will be compared to the regressions
presented later in this paper which use the arithmetic mean return
as the dependent variable.

3It is possible that the credit crisis of 1966 which
caused stock prices to drop sharply could down bias the skew-
ness statistics used here.

4The rate of return measurement used in empirical work can
influence the skewness of the probability distribution. If returns
are defined to be the price plus dividend relatives minus unity,

Pt+l + D Pt+l + D
r=—5 - 1, instead of the log of the relative, fn ¢ = ),

t t



- 19 -

the distribution will be more positively skewed. Since the
first definition was used in this study the skewness estimates
should not be low.

th .
5The nth root of the n moment of a hypothetical port=-

folio is defined below.

1/
EE(bd.l + (_1—b)dm)n:' ’

“nh
n 1/n
_ . n-k k n-k_ %k
=% ((n—k)lki b (1-b) E(di dm )
k=0
dUnh
The reciprocal of the derivative is:
db B On-l
©m E@,d - )"
im nm
The derivative dE(r )/db = E(r.,) - E(r_) is multiplied times
n 1 m dcnh

using the chain rule as shown in equation (3) to obtain
equation (4).

6Jean's derivation of equation (5) was conducted in {E(r),gn]
space. The brief derivation outlined in the preceding footnote
is different from Jean's original derivation only to the extent
that it is done in [on, E{r)] space rather than [E(r), gn] space.

Some analysts have erroneously interpreted equation (5) as
implying an unsuspected inverse relation between the risk pre-
mium and the third moment. This is not true if Tam is negative,
as the empirical data used here [11] indicates.

7The data for the 788 stocks was obtained from the Univer-

sity of Chicago Price Relative File, a magnetic tape described by
L. Fisher and J.H. Lorie [8].

For each common stock in the sample, the equation below
shows how the returns were calculated.

- + . . .
(Pt Pt—l) Dt _ Capital gains or losses plus dividends
Te Pt—l purchase price
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Pt denotes the market price at the beginning of the month, Dt

was the cash dividend (if any) paid during the period. All
market prices were adjusted for changes in the unit of account
(such as stock dividends and splits) before rates of return
were calculated. Rates of return were calculated for the mutual
funds as shown below.

8The raw mutual fund data was gathered for the Twentieth
Century Fund Study of institutional investors [11].

The mutual fund relatives contained income from cash
dividend disbursements (D ), changes in net asset value (AV )
plus any capital gains disbursements (gt) made by the fund.

+ +
. Dt AV =
t Beginning of period net asset value

The data files [8], [l1l] contained monthly relatives (mr)
which were converted to quarterly relatives (gr) as follows:

P_\{P_\/P_+D P_4D
gr = (mrl)(mrz)(mr3) =(—£)(-2)(—%——) = ( 3

Po Pl, 2 o)

Quarterly returns were used in preference to monthly returns be-
cause the short-run (that is, the monthly) data contains more
random noise [5] than data measured over longer differencing in-
tervals (namely quarters).

9Using the normalized statistical moments as the independ-
ent variables offers the advantage of increased statistical effi-
ciency compared to using the raw statistical moments. However,
taking the root of the statistical moments also dampens the tendency
for the raw statistical moments to explode when outlying obser-
vations enter the calculations. And, since Jean's work suggests
linear additive models when using the roots of the moments, the
roots were used here. The proper adjustments to maintain the sign
of the 3rd root of the third moment were made after taking the
roots. Regressions were run using the statistical moments as the
independent variables; then, the regressions were replicated using
the roots of the moments. The roots of the moments yielded in-
significantly better fits. S0, the roots were used as the inde-
pendent variables here. Problems with normalized moments (namely,
kurtosis) also discouraged their use [15].
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OBlume also reports no appreciable degree of skewness
in an independept study [ 4, p.le4].

lEmpirical tests of ex ante theories which use ex post
data must assume, either implicitly or explicitly, that inves-
tors past expectations were unbiased in order to justify using
historical data. Since the geometric mean return is the true
compound rate of return the investor earned from a multi-period
(namely, 34 quarter) investment, it is used as the surrogate
for expected returns so as not to violate the underlying assump-
tion that investor's past expectations tended to be borne out
in an unbiased manner.

lzTaking a total differential of equation (11) vields
equation (12)

B[E(ri)—R] 5 B[E(ri)-R] 3 B{E(ri)-R
d{E(ri)—R} = aqz dﬁzi + aa? dGBi + . 3 dc4i (12)
o4 31 Y41
4 { 3 [E(r, }-R] n
A{E(r.)} = R + = ( i ) do . (12a)
i ni
n=2 aﬁn
“ni

Since the statistical moments are all mathematical functions of
(that is, dependent on) the lower order moments about the origin
as shown below. The total differential of equation (12) is only
an approximation because the moments are not independent.

05 = E(r) - B(r)>
gg = E(r) - 3E(r) E(r?) + 2E(r)>
aj = E(r") - 4 E(r) BE(r®) + 6 (x)> E(r?) - 3g(r)?

Equation (12) is only shown to suggest the rationale behind the
linear additive regression model shown as equation (12b).

l3Evidence has been published suggesting that tre probability
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distribution of returns is non-normal [5,7,18]. This implies
that the t statistic tests of significance [14] underlying the
discussion of Tables T, II, and III are biased. No cognizance is
taken of such possible biases.

14 s . .

It has been shown [16] that when the probability distri-

bution is not symmetric, a spurious covariance is induced between
the first two moments as follows: Cov(E(ri),oi) = og/n, where n

is the sample size. However, the degree of skewness found in the
data presented in Tables I, II and III is small enough so that this
bias is not highly significant.

Fama's empirical research on security price movements [5]
suggests that the probability distributions of stock prices cannot
be well-described by statistical moments because the data implies a
theoretical probability distribution which has an infinite variance.
Fama suggests that a four parameter Baretian distribution which can
be described by a location parameter, a characteristic exponent,

a skewness parameter, and a scale parameter can best describe the
probability distributions of stocks. Sidestepping the question

of which probability distribution is the best description of
reality, the fact remains that any empirical sample of stock prices
will in fact have a finite variance. This is obvious since
economic data are finite real numbers. Therefore (whether or not
they are efficient statistics) the first four moments of a stock's
probability distribution exist and may provide valuable information.
Since the moments exist (in the empirical sense that there are
finite numbers), they were used in this research for two main
reasons:

1) Arditti's and Jean's work was stated in terms of statistical
moments, and

2) for statistical work the moments are simpler to work with than
the parameters of the Paretian distribution.

16 . . . .
Taking a total differential of equation (13) suggests,
as a first approximation (that is, overlooking dependence
between the variables),equation (14) as an asset pPricing model.

JE(r.)
i

I 09 w

d[E(ri)-R] =

aE (did;) (14)
n

1 \3E(4.4d)
1m

Equation (14) implies eguation (l4a).
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7Theory and empirical evidence suggest that the sign on
the E(didm) term will be positive in bull market periods and
negative in bear market periods. Therefore, the conclusion that
E(didm) is significant is based on the absolute value of its
t statistic rather than on its sign or actual wvalue.
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