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Abstract

This study investigates whether market-wide liquidity is a state variable important
for asset pricing. We Þnd that expected stock returns are related cross-sectionally to
the sensitivities of returns to ßuctuations in aggregate liquidity. Our monthly liquidity
measure, an average of individual-stock measures estimated with daily data, relies on
the principle that order ßow induces greater return reversals when liquidity is lower.
Over a 34-year period, the average return on stocks with high sensitivities to liquidity
exceeds that for stocks with low sensitivities by 7.5% annually, adjusted for exposures
to the market return as well as size, value, and momentum factors.
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Andrew Metrick, and Hans Stoll are appreciated.



1. Introduction

In standard asset pricing theory, expected stock returns are related cross-sectionally to re-

turns� sensitivities to state variables with pervasive effects on consumption and investment

opportunities. The basic intuition is that a security whose lowest returns tend to accompany

unfavorable shifts in quantities affecting an investor�s overall welfare must offer additional

compensation to the investor for holding that security. Liquidity appears to be a good can-

didate for a priced state variable. It is often viewed as important for investment decisions,

and recent studies Þnd that ßuctuations in various measures of liquidity are correlated across

stocks.1 This empirical study investigates whether market-wide liquidity is indeed priced.

That is, we ask whether cross-sectional differences in expected stock returns are related to

the sensitivities of returns to ßuctuations in aggregate liquidity.2

Liquidity is a broad and elusive concept that generally denotes the ability to trade large

quantities quickly, at low cost, and without moving the price. We focus on an aspect of

liquidity associated with temporary price ßuctuations induced by order ßow. Our monthly

aggregate liquidity measure is a cross-sectional average of individual-stock liquidity measures.

Each stock�s liquidity in a given month, estimated using that stock�s within-month daily

returns and volume, represents the average effect that a given volume on day d has on the

return for day d + 1, when the volume is given the same sign as the return on day d. The

basic idea is that, if signed volume is viewed roughly as �order ßow,� then lower liquidity is

reßected in a greater tendency for order ßow in a given direction on day d to be followed by

a price change in the opposite direction on day d+1. Essentially, lower liquidity corresponds

to stronger volume-related return reversals, and in this respect our liquidity measure follows

the same line of reasoning as the model and empirical evidence presented by Campbell,

Grossman, and Wang (1993). They Þnd that returns accompanied by high volume tend to

be reversed more strongly, and they explain how this result is consistent with a model in

which some investors are compensated for accommodating the liquidity demands of others.

1Chordia, Roll, and Subrahmanyam (2000a), Hasbrouck and Seppi (2000), Huberman and Halka (1999),
and Lo and Wang (2000) empirically analyze the systematic nature of liquidity. Eisfeldt (2001) develops a
model in which endogenous ßuctuations in liquidity are correlated with real fundamentals such as produc-
tivity and investment.

2The standard models relating securities� expected returns to their state-variable sensitivities, such as
Merton (1973) and Cox, Ingersoll, and Ross (1985), are developed under an assumption of perfectly liquid
markets. Deriving exact analytical predictions in settings with some degree of illiquidity that ßuctuates
commonly across securities is a task the theoretical literature still pursues. Nevertheless, the basic intuition
underlying the standard theory seems relevant to that more general setting. Holmström and Tirole (2001)
develop a model in which a security�s expected return is related to its covariance with aggregate liquidity.
Unlike standard models, their model assumes risk-neutral consumers and is driven by liquidity demands at
the corporate level.
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We Þnd that stocks� �liquidity betas,� their sensitivities to innovations in aggregate

liquidity, play a signiÞcant role in asset pricing. Stocks with higher liquidity betas exhibit

higher expected returns. In particular, from 1966�99, a spread between the top and bottom

deciles of predicted liquidity betas produces an abnormal return (�alpha�) of 7.5% per year

with respect to a model that accounts for sensitivities to four other factors: the market,

size, and value factors of Fama and French (1993) and a momentum factor. The alpha with

respect to just the three Fama-French factors is over 9% per year. The results are both

statistically and economically signiÞcant, and similar results occur in both halves of the

overall 34-year period.

This study investigates whether expected returns are related to systematic liquidity risk

in returns, as opposed to liquidity per se. The latter�s relation to expected stock returns has

been investigated by numerous empirical studies, including Amihud and Mendelson (1986),

Brennan and Subrahmanyam (1996), Brennan, Chordia, and Subrahmanyam (1998), Datar,

Naik, and Radcliffe (1998), and Fiori (2000).3 Using a variety of liquidity measures, these

studies generally Þnd that less liquid stocks have higher average returns. Amihud (2000)

and Jones (2000) document the presence of a time-series relation between their measures

of market liquidity and expected market returns. Instead of investigating liquidity as a

characteristic that is relevant for pricing, this study entertains market-wide liquidity as a

state variable that affects expected stock returns because its innovations have effects that are

pervasive across common stocks. The potential usefulness of such a perspective is recognized

by Chordia, Roll, and Subrahmanyam (2000a, 2000b).

Chordia, Subrahmanyam, and Anshuman (2000) Þnd a signiÞcant cross-sectional relation

between stock returns and the variability of liquidity, where liquidity is proxied by measures

of trading activity such as volume and turnover. The authors report that stocks with more

volatile liquidity have lower expected returns, an unexpected result. Liquidity risk in that

study is measured as Þrm-speciÞc variability in liquidity. Our paper focuses on systematic

liquidity risk in returns and Þnds that stocks whose returns are more exposed to market-wide

liquidity ßuctuations command higher expected returns.

Section 2 explains the construction of the liquidity measure and brießy describes some

of its empirical features. The sharpest troughs in market-wide liquidity occur in months

easily identiÞed with signiÞcant Þnancial and economic events, such as the 1987 crash, the

beginning of the 1973 oil embargo, and the 1998 collapse of Long Term Capital Manage-

3Theoretical studies that investigate the relation between liquidity and asset prices include Amihud and
Mendelson (1986), Constantinides (1986), Heaton and Lucas (1996), Vayanos (1998), Huang (2001), and Lo,
Mamaysky, and Wang (2001), among others.
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ment (LTCM). Moreover, in months of large liquidity drops, stock returns are negatively

correlated with Þxed-income returns, in contrast to other months. This observation seems

consistent with �ßight-to-quality� effects. We also Þnd signiÞcant commonality across stocks

in our monthly liquidity measure. That result, in accord with the high-frequency evidence

of previous studies, enhances the prospect that market-wide liquidity could be a priced state

variable.

Section 3 presents the asset pricing investigation. We Þnd that stocks� liquidity betas

can be predicted not only by their simple historical estimates but by other variables as well.

In each year, we sort stocks by their predicted liquidity betas and form ten portfolios. This

procedure yields a substantial spread in the estimated post-formation liquidity betas as well

as the large spread in abnormal returns reported above. Sorting stocks on their historical

liquidity betas alone produces results that are slightly less strong but still signiÞcant. A sort

on Þrm size reveals that stocks of the smallest Þrms tend to have high liquidity betas as well

as signiÞcantly positive alphas with respect to the four-factor model.

Section 4 provides an investment perspective on liquidity risk by examining the degree

to which spreads between stocks with high and low liquidity risk expand the mean-variance

opportunity set. In an investment universe that also includes the market portfolio and

spreads based on size, value, and momentum, we Þnd that liquidity-risk spreads receive

substantial weight in the portfolio with the highest ex post Sharpe ratio. The importance

of the momentum spread in that portfolio is especially reduced as compared to a universe

without a liquidity-risk spread. Moreover, an equally weighted liquidity-risk spread reduces

momentum�s alpha by half in the overall 34-year period and eliminates it completely (driving

it to a small negative value) in the more recent 17-year subperiod from 1983�99. Section 5

brießy reviews our conclusions and suggests directions for future research.

2. Market-Wide Liquidity

2.1. Constructing a Measure

Liquidity has many dimensions. This study focuses on a dimension associated with tem-

porary price changes accompanying order ßow. For each month from July 1962 through

December 1999, we construct a market liquidity measure as the equally weighted average of

the liquidity measures of individual stocks on the NYSE and AMEX, using daily data within
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the month.4 SpeciÞcally, the liquidity measure for stock i in month t is the ordinary-least-

squares (OLS) estimate of γi,t in the regression,

rei,d+1,t = θi,t + φi,tri,d,t + γi,tsign(r
e
i,d,t) · vi,d,t + ²i,d+1,t, d = 1, . . . , D, (1)

where quantities are deÞned as follows:

ri,d,t: the return on stock i on day d in month t,

rei,d,t: ri,d,t − rm,d,t, where rm,d,t is the return on the CRSP value-weighted market
return on day d in month t, and

vi,d,t: the dollar volume for stock i on day d in month t.

A stock�s liquidity estimate is included in a given month only if there are at least 15 consec-

utive observations with which to estimate the above regression (i.e., D ≥ 15); stocks with

share prices less than $5 and greater than $1000 are excluded; and volume is measured in

millions of dollars.

The basic idea is that �order ßow,� constructed here simply as volume signed by the

contemporaneous return on the stock in excess of the market, should be accompanied by a

return that one expects to be partially reversed in the future if the stock is not perfectly

liquid. We assume that the greater is that expected reversal for a given dollar volume,

the lower is the stock�s liquidity. That is, one would expect γi,t to be negative in general

and larger in absolute magnitude when liquidity is lower.5 Viewing volume-related return

reversals as arising from liquidity effects is motivated by Campbell, Grossman, and Wang

(1993). Those authors present a model in which risk-averse �market makers,� deÞned in

the general sense of Grossman and Miller (1988), accommodate order ßow from liquidity-

motivated traders and are compensated with higher expected return (by buying at a low

price or selling at a high one). The greater the order ßow, the greater the compensation, so

this liquidity-induced effect on expected future return is larger when current volume is high.

Campbell, Grossman, and Wang present empirical evidence consistent with this argument.

As illustrated below, the estimates of the liquidity measure γi,t are typically negative,

although there are months in which the average estimate is positive. The preponderance of
4All of the individual-stock return and volume data used in the study are obtained from the Center for

Research in Security Prices (CRSP) at the University of Chicago. We exclude NASDAQ in constructing the
aggregate liquidity measure, because NASDAQ returns and volume data are available from CRSP for only
part of this period (beginning in 1982). Also, reported volumes on NASDAQ include inter-dealer trades,
unlike the volumes reported on the NYSE and the AMEX.

5An alternative class of liquidity measures is based on a positive contemporaneous relation between returns
and order ßow. Typically, these measures are estimated with intraday transactions data, and the volume
for a transaction is signed by comparing the transaction price to the bid-ask midpoint. See, for example,
Hasbrouck (1991), Foster and Viswanathan (1993), and Brennan and Subrahmanyam (1996).
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negative values is consistent with the basic intuition underlying our liquidity measure, but

it must be recognized that the measure abstracts from other potential roles that volume can

play in the relation between current and lagged return. For example, Llorente, Michaely,

Saar, and Wang (2001) explain that asymmetric information (not considered by Campbell,

Grossman and Wang, 1993) can weaken the volume-related reversal effect and even produce

volume-related continuations in returns on stocks for which information-motivated trading

is sufficiently important. Using daily data, the authors report empirical evidence consistent

with that prediction. Other related evidence is reported by Lee and Swaminathan (1998),

who conclude that momentum effects in monthly returns are stronger for stocks with high

recent volume.

The precise speciÞcation of the regression in (1) is somewhat arbitrary, as is any liquidity

measure. We use rei,d,t, the return in excess of the market, both as the dependent variable as

well as to sign volume, in order to better isolate the individual-stock effect of volume-related

return reversals. We also include the lagged stock return as a second independent variable

with the intention of capturing lagged-return effects that are not volume-related, such as

reversals due to a minimum tick size. For that purpose we use the total return ri,d,t instead

of the return in excess of the market simply to have this second variable be somewhat less

correlated with the variable whose coefficient we take as the liquidity measure (since we use

rei,d,t to sign volume).

The use of signed volume as a predictor of future return can be motivated a bit more

formally using the equilibrium model of Campbell, Grossman, and Wang (1993). In their

model, the stock�s excess return Qt and order ßow ∆t are jointly normal, along with Qt+1,

and the regression relating expected future return to current return and volume Vt (= |∆t|)
is given by a relation of the form

E(Qt+1|Qt, Vt) = φ1Qt − φ2 tanh(φ3VtQt)Vt, (2)

where φ2 < 0 and φ3 < 0. As the correlation between Qt and ∆t increases, (2) becomes well

approximated by

E(Qt+1|Qt, Vt) = φ1Qt + φ2sign(Qt)Vt, (3)

which is roughly analogous to (1).6 To the extent that order ßow plays an important role in

6Equation (2) relies on a result given in Wang (1994). It is straightforward to show that Wang�s equation
B.6 allows (2) to be restated as

E(Qt+1|Qt, Vt) = φ1Qt + φ2 tanh
∙µ

ρ

1− ρ2
¶µ

Qt
σQ

¶µ
Vt
σ∆

¶¸
Vt,

where ρ is the correlation between Qt and ∆t, and σQ and σ∆ are the standard deviations of those variables.
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determining high-frequency return variation, a conjecture that seems plausible, we see that

the model of Campbell, Grossman, and Wang gives some justiÞcation for the use of signed

volume. Of course, their model of a single-stock economy with continuous price variables (no

minimum tick) is only suggestive when applied to our empirical setting, but the intuition

underlying their model corresponds to our interpretation of γi,t as a liquidity measure.

Although the OLS slope coefficient �γi,t is an imprecise estimate of a given stock�s γi,t,

the market-wide average liquidity in month t is estimated more precisely. The disturbances

in (1) are less than perfectly correlated across stocks (recall that the dependent variable is

the return in excess of the market). Thus, as the number of stocks, N , grows large, the true

unobserved average γt = (1/N)
PN
i=1 γi,t becomes more precisely estimated by

�γt = (1/N)
NX
i=1

�γi,t. (4)

We construct the above market-wide measure for each month from August 1962 through

December 1999 using all NYSE and AMEX stocks with available data, and N ranges from

939 to 2,121. The raw series of �γt�s is subject to the upward trend in dollar values (and

volumes) over the period, so the values of �γt tend to be smaller in magnitude later in the

period. To obtain more homogeneity over time, we construct the scaled series (mt/m1)�γt,

where mt is the total dollar value at the end of month t − 1 of the stocks included in the
average in month t, and month 1 corresponds to August 1962. This scaled series is plotted

in Figure 1.

The scaled liquidity series has a Þrst-order serial correlation of 0.22. To construct inno-

vations in liquidity, we Þrst form the scaled monthly difference,

∆�γt =
µ
mt

m1

¶
(�γt − �γt−1) , (5)

and then regress ∆�γt on its lag as well as the lagged value of the scaled level series:

∆�γt = a+ b∆�γt−1 + c
µ
mt

m1

¶
�γt−1 + ut. (6)

This regression produces residuals that appear serially uncorrelated. The innovation in

liquidity, Lt, is taken as the Þtted residual divided by 100:

Lt = 1

100
�ut. (7)

Note that as ρ → 1, tanh
h³

ρ
1−ρ2

´³
Qt

σQ

´³
Vt
σ∆

´i
converges in distribution to sign(Qt), since Vt ≥ 0 and

tanh(x) approaches 1(−1) as x→∞(−∞).
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The arbitrary scaling by 100 simply produces more convenient magnitudes of the liquidity

betas reported in the next section.

Our liquidity measure relies on a large cross-section of stocks and yields a monthly series

spanning more than 37 years. As such, the series seems well suited for this study�s focus on

liquidity risk and asset pricing. Aggregate stock-market liquidity is measured in a variety

of alternative ways by recent studies that explore other interesting issues. Those studies

include Amihud (2000), Chordia, Roll, and Subrahmanyam (2000a, 2000b, 2001), Jones

(2000), and Lo and Wang (2000). Chordia, Roll, and Subrahmanyam form daily time series

of various measures of liquidity (such as depth and quoted and effective bid-ask spreads) and

trading activity (such as dollar volume and order imbalance), averaged across NYSE stocks

over the period 1988 through 1998. Jones collects an annual time series of average quoted

bid-ask spreads on the stocks in the Dow Jones index, covering the period of 1898 through

1998. Amihud constructs an annual aggregate liquidity series for the period of 1963 through

1997 by averaging across NYSE stocks the ratios of average absolute price change to trading

volume. Lo and Wang form a weekly series of average turnover across NYSE and AMEX

stocks from July 1962 to December 1996.

2.2. Empirical Features of the Liquidity Measure

Perhaps the most salient features of the liquidity series plotted in Figure 1 are its occasional

downward spikes, indicating months with especially low estimated liquidity. Many of these

spikes occur during market downturns, consistent with the evidence in Chordia, Roll, and

Subrahmanyam (2000b) and Jones (2000), who use different liquidity measures. Chordia,

Roll, and Subrahmanyam observe that their liquidity measures plummet in down markets,

and Jones Þnds that his average-spread measure exhibits frequent sharp spikes that often

coincide with market downturns.

The largest downward spike in our measure of aggregate liquidity occurs in October 1987,

the month of the stock-market crash. Grossman and Miller (1988) argue that both spot and

futures stock markets were �highly illiquid� on October 19, the day of the crash, and Amihud,

Mendelson, and Wood (1990) contend that the crash occured in part because of a rise in

market illiquidity during and before October 19. The second largest spike is in November

1973, the Þrst full month of the mideast oil embargo. Estimated liquidity is generally low

in the early 1970s, again consistent with the evidence in Jones (2000). The third largest

negative value is in September 1998, when liquidity is widely perceived to have dried up due

7



to the LTCM collapse and the recent Russian debt crisis.7 The next largest spike occurs

in May 1970, a month of signiÞcant domestic political unrest.8 There is obviously a risk in

pushing such anecdotal analysis very far, but a drop in stock-market liquidity during these

months seems at least plausible.

The monthly innovation in liquidity, Lt, has a correlation of 0.36 with the returns on both
the value-weighted and equally weighted NYSE-AMEX indexes, constructed by CRSP. This

result goes in the same direction as that reported by Chordia, Roll, and Subrahmanyam

(2000b), who Þnd a positive association at a daily frequency between stock returns and

changes in other market-wide liquidity measures. As mentioned earlier, the downward spikes

in our liquidity series often coincide with market downturns, and this observation is conÞrmed

by comparing correlations between Lt and the value-weighted market return for months in
which that return is negative versus positive. The correlation is 0.52 in negative-return

months but only 0.03 in positive-return months, and the difference between the liquidity-

return relation in these two subsamples is statistically signiÞcant.9 The simple correlation

between Lt and stock-market returns is larger than those between Lt and other factors
typically included in empirical asset pricing studies. In particular, Lt�s correlations with
SMB and HML, the size and value factors constructed by Fama and French (1993), are 0.23

and -0.12.10 Recall that SMB is the difference in returns between small and large Þrms, while

HML is the return difference between stocks with high and low book-to-market ratios (i.e.,

value minus growth). The correlation between Lt and a momentum factor is only 0.01. The
inclusion of momentum as an asset pricing factor, here and in other studies, is motivated by

the evidence in Jegadeesh and Titman (1993) that ranking stocks by performance over the

past year produces abnormal returns.11

7The Economist magazine (September 25, 1999) writes that �In August 1998, after the Russian govern-
ment had defaulted on its debts, liquidity suddenly evaporated from many Þnancial markets, causing asset
prices to plunge.� The article also asserts that �The possibility that liquidity might disappear from a market
... is a big source of risk to an investor.�

8On April 30, President Nixon announced the invasion of Cambodia and the need to draft 150,000 more
soldiers, the Kent State and Jackson State shootings occurred on May 4 and May 14, and nearly 500 colleges
and universities closed that month due to anti-war protests.

9We run the regression,
Lt = a+ bRS,t + cDtRS,t + et,

where RS,t is the market return and Dt = 1 if RS,t > 0 and zero otherwise. The estimate of b is 1.01 with a
t-statistic of 9.7, and the estimate of c is -0.99 with a t-statistic of -6.2.
10We are grateful to Ken French for supplying the Fama-French factors.
11To construct the momentum factor in month t, which we denote as MOM, all stocks in the CRSP Þle

with return histories back to at least month t− 12 are ranked at the end of month t− 1 by their cumulative
returns over months t−12 through t−2, and MOM is the payoff on a spread consisting of a $1 long position
in an equally weighted portfolio of the top decile of the stocks in that ranking and a corresponding $1 short
position in the bottom decile. This particular speciÞcation is the same as the �12�2� portfolio in Fama and
French (1996).
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To describe further the nature of months with exceptionally low liquidity, we note that a

kind of �ßight to quality� effect appears in such months. That is, months in which liquidity

drops severely tend to be months in which stocks and Þxed-income assets move in opposite

directions. Table 1 reports correlations between the monthly return on the CRSP value-

weighted NYSE-AMEX index (RS,t) and three Þxed-income variables: minus the change in

the rate on one-month Treasury bills (−∆Rf,t), the return on long-term government bonds

(RGB,t), and the return on long-term corporate bonds (RCB,t).
12 The Þrst row reports the

correlations across all months, and the next two rows report correlations in subsamples split

according to the values of Lt. The second row of Table 1 shows the correlation between

RS,t and the other variables during the 14 months in which Lt is at least 2 standard devi-
ations below its mean. The correlations between stock returns and the three Þxed-income

series during those months are negative, in contrast to the correlations during the remaining

months, and the bootstrap p-values indicate that those differences are signiÞcant at levels

of either 5% (for the bond returns) or 10% (for the T-bill rate change).13 The results across

both subperiods generally support the inference drawn for the overall period, in that Þve of

the six correlations between RS,t and the Þxed-income series are negative in the months of

large liquidity drops.

Also shown in Table 1 is the correlation between the stock return RS,t and the change in

volume Volt, deÞned as the equally weighted average percentage change in monthly dollar

volume for NYSE-AMEX stocks. Stock returns are positively correlated with volume changes

in all months, but the correlation is negative in months with large liquidity drops, and the

bootstrap p-value for the overall period is 0.002. The subperiod results again support the

inference that the correlation is lower in the months of severe liquidity drops. There is no

obvious story here, other than perhaps that, in such months, higher volume accompanying

a larger liquidity drop is another manifestation of a ßight to quality. We also Þnd that,

in low liquidity months, the correlation between volume changes and Lt is equal to -0.27,
whereas it equals 0.18 in other months (and in all months). But, again, we do not wish to

push the descriptive analysis of the market-wide liquidity series too far. The primary goal

of the paper is to investigate whether liquidity is a source of priced systematic risk in stock

returns, and we use the series constructed here for that purpose.

An important motive for entertaining a market-wide liquidity measure as a priced state

variable is evidence that ßuctuations in liquidity exhibit commonality across stocks. Chor-

12The Þxed-income data are obtained from Ibbotson Associates.
13The p-values are computed by resampling the original series and then randomly assigning observations

to subsamples of the same size as in the reported results.
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dia, Roll, and Subrahmanyam (2000a) and Huberman and Halka (1999) Þnd signiÞcant

commonality in various liquidity measures at a daily frequency, while Hasbrouck and Seppi

(2000) Þnd only weak commonality in intraday (15-minute) ßuctuations in liquidity. Our

stock-by-stock measure �γit affords an additional perspective on commonality, since it mea-

sures liquidity differently, it is constructed at a monthly frequency, and our sample period

is substantially longer. We conduct a simple exploration of commonality in �γit across stocks

by Þrst sorting all stocks at the end of each year by market value and then assigning them to

decile portfolios based on NYSE breakpoints (i.e., each decile has an equal number of NYSE

stocks). Each decile portfolio�s change in liquidity for a given month is then computed as the

cross-sectional average change in the individual-stock measures, and this procedure yields

a 1963�1999 monthly series of liquidity changes for each decile. The sample correlation of

these series between any two deciles is positive. If the decile series are averaged separately

across the odd-numbered and even-numbered deciles, the sample correlation between the

two resulting series is 0.56, and the t-statistic for a test of zero correlation is 14.20. This

commonality in our liquidity measure across stocks enhances the prospect that market-wide

liquidity represents a priced source of risk.

3. Is Liquidity Risk Priced?

This section investigates whether a stock�s expected return is related to the sensitivity of

its return to the innovation in aggregate liquidity, Lt. That sensitivity, denoted for stock i
by its liquidity beta βLi , is the slope coefficient on Lt in a multiple regression in which the
other independent variables are additional factors considered important for asset pricing. To

investigate whether the stock�s expected return is related to βLi , we follow a straightforward

portfolio-based approach to create a universe of assets whose liquidity betas are sufficiently

disperse. At the end of each year, starting with 1965, we sort stocks based on their predicted

values of βLi and form ten portfolios. The post-formation returns on these portfolios during

the next 12 months are linked across years to form a single return series for each decile

portfolio. The excess returns on those portfolios are then regressed on return-based factors

that are commonly used in empirical asset pricing studies. To the extent that the regression

intercepts, or alphas, differ from zero, βLi explains a component of expected returns not

captured by exposures to the other factors.

For the purpose of portfolio formation, we deÞne βLi as the coefficient on Lt in a regression
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that also includes the three factors of Fama and French (1993),

ri,t = β
0
i + β

L
i Lt + βMi MKTt + βSi SMBt + βHi HMLt + ²i,t, (8)

where ri,t denotes asset i�s excess return, MKT denotes the excess return on a broad mar-

ket index, and the other two factors, SMB and HML, are payoffs on long-short spreads

constructed by sorting stocks according to market capitalization and book-to-market ratio.

This deÞnition of βLi captures the asset�s comovement with aggregate liquidity that is dis-

tinct from its comovement with other commonly used factors. We allow βLi for any given

stock to vary through time, and the predicted values of βLi used to sort stocks are obtained

using two methods. The Þrst allows the predicted βLi to depend on the stock�s historical

least-squares estimate as well as a number of additional stock characteristics observable at

the time of the sort. The results using that method, reported in subsection 3.1., reveal large

differences in expected returns on βLi -sorted portfolios that are unexplained by the other

factors. The second method uses only historical betas and is presented to conÞrm that the

Þrst set of results is not driven solely by sorting stocks on the other characteristics that

help predict liquidity betas. The results from that method, reported in subsection 3.2., also

reveal large and signiÞcant differences in alphas on the βLi -sorted portfolios. Subsection 3.3

reports results obtained for portfolios formed by sorting stocks on market capitalization.

The portfolio-formation procedure uses data available only as of the formation date, and

this requirement applies to the liquidity series as well. Thus, the formation procedure each

year begins with a re-estimation of (6) using only the raw liquidity series (�γt) available up

to that point in time. The historical values of Lt used in that formation year are then
recomputed using (7), where �ut is the Þtted residual from that re-estimated regression.

Our analysis covers all stocks traded on the NYSE, AMEX, and NASDAQ that are

ordinary common shares (CRSP sharecodes 10 and 11), excluding ADRs, SBIs, certiÞcates,

units, REITs, closed-end funds, companies incorporated outside the U.S., and Americus

Trust Components. Stocks with prices below $5 or above $1,000 are also excluded from the

portfolio sorts.

3.1. Sorting by Predicted Liquidity Betas

3.1.1. Predicting Liquidity Betas

We model each stock�s liquidity beta as a linear function of observable variables,

βLi,t−1 = ψ1,i + ψ
0
2,iZi,t−1. (9)
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The vector Zi,t−1 contains seven characteristics: (i) the historical liquidity beta estimated

using all data available from months t−60 through t−1 (if at least 36 months are available),
(ii) the average value of �γi,t from month t−6 through t−1, (iii) the natural log of the stock�s
average dollar volume from months t − 6 through t − 1, (iv) the cumulative return on the
stock from month t − 6 through t − 1, (v) the standard deviation of the stock�s monthly
return from month t−6 through t−1, (vi) the natural log of the price per share from month
t−1, and (vii) the natural log of the number of shares outstanding from month t−1. (These
seven characteristics are listed in Table 2.) The list of characteristics is necessarily arbitrary,

although they do possess some appeal ex ante. Historical liquidity beta should be useful if the

true beta is fairly stable over time. The average of the stock�s �γi,t and volume can matter

if liquidity risk is related to liquidity per se. Stocks with different market capitalization

could have different liquidity betas, so we include shares outstanding and stock price, whose

product is equal to the stock�s market capitalization. The level and variability of recent

returns simply allow some role for short-run return dynamics. Each characteristic is �de-

meaned� by subtracting the time-series average (through month t−1) of the characteristic�s
cross-sectional average in each previous month.

Substituting the right-hand side of (9) for βLi in (8), we obtain

ri,t = β
0
i + β

M
i MKTt + β

S
i SMBt + β

H
i HMLt + (ψ1,i + ψ

0
2,iZi,t−1)Lt + ²i,t. (10)

The above regression for stock i contains 11 independent variables, 7 of which are cross-

products of the elements of Zi,t−1 with Lt. (This approach to incorporating time-variation
in betas follows Shanken, 1990.) To increase precision in the face of the substantial variance

in individual-stock returns, we restrict the coefficients ψ1,i and ψ2,i in equation (9) to be the

same across all stocks and estimate them using the whole panel of stock returns. SpeciÞcally,

at the end of each year between 1965 and 1998, we Þrst construct for each stock the historical

series of

²i,t = ri,t − �βMi MKTt − �βSi SMBt − �βHi HMLt, (11)

where the �β�s are estimated from the regression of the stock�s excess returns on the Fama-

French factors and Lt, using all data available up to the current year-end. Then we run a
pooled time-series cross-sectional regression of ²i,t on the characteristics,

²i,t = ψ0 + ψ1Lt + ψ02Zi,t−1Lt + νi,t, (12)

again using all data available up to the current year-end. The Þrst year-end considered here

is that of 1965, since the data on Lt begin in August 1962, and it seems reasonable to use
at least three years of data to conduct the estimation. A stock is excluded for any month in

which it has any missing characteristics.
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Table 2 reports the estimated coefficients �ψ1 and �ψ2 from the pooled regression, together

with their t-statistics.14 Results are reported for several periods, each beginning in August

1962 but ending in December of a different year; the estimated coefficients are those used

in the ranking at that year-end. Each coefficient is multiplied by the time-series average of

the cross-sectional standard deviation of the corresponding de-meaned characteristic. This

scaling helps clarify the relative contributions of the individual characteristics to the pre-

dicted betas. Historical liquidity beta is the most important determinant of the predicted

beta in the longest sample period, used for the most recent ranking in December 1998. The

coefficient of 2.30 (t = 9.97) indicates that if a stock�s historical liquidity beta is one cross-

sectional standard deviation above the cross-sectional mean of the historical betas, then the

stock�s predicted liquidity beta is higher by 2.30, holding constant the other characteristics

and averaging the effect over time. Historical beta is also the most robust determinant of

the predicted beta across the different periods. The coefficient on stock price is signiÞcantly

positive early in the sample, but its effect weakens in the longer period. Volatility enters

negatively, again more strongly in the earlier periods. The coefficients on the stock�s past

return, shares outstanding, and average volume are less stable over time.15 The coefficient

on the stock�s recent average �γit is signiÞcantly negative in the longest period (and insigniÞ-

cantly negative in the subperiods), suggesting that stocks with lower liquidity (as measured

by �γit) tend to be more exposed to aggregate liquidity ßuctuations.

3.1.2. Post-Ranking Portfolio Betas

At the end of each year, stocks are sorted by their predicted liquidity betas and assigned to

ten portfolios. The predicted beta for each stock is calculated from equation (9), using the

year-end values of the stock�s characteristics along with the values of �ψ1 and �ψ2 estimated

using data through the current year-end. Portfolio returns are computed over the following

12 months, after which the estimation/formation procedure is repeated. The post-ranking

returns are linked across years, generating a single return series for each decile covering the

14The t-statistics are computed assuming independence of the regression residuals, which are purged of
common variation in returns attributable to the three Fama-French factors together with Lt.
15As mentioned earlier, the trading volume of the NASDAQ stocks is overstated relative to the

NYSE/AMEX volume. When the NASDAQ stocks are excluded from the pooled regression, the coeffi-
cient on volume remains negative in the Þrst two subperiods and turns insigniÞcantly negative in the overall
period. In addition, the results presented in this section lead to similar conclusions about the relation be-
tween liquidity risk and expected stock returns. We retain the NASDAQ stocks in the analysis, because their
inclusion increases the dispersion of the post-ranking liquidity betas of the portfolios sorted on predicted
betas, in line with the purpose of the sorting procedure. Stocks with prices outside the $5-1000 range are also
included in the pooled regression for the same reason: their inclusion increases the spread in the post-ranking
betas, even if these stocks are subsequently excluded from the portfolio sorts.
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period from January 1966 through December 1999. On average, there are 187 stocks in each

portfolio, and no portfolio ever contains fewer than 103 stocks.

Panel A of Table 3 reports the post-ranking liquidity betas of the decile portfolios when

the stocks within each portfolio are value weighted. (The results for equally weighted port-

folios, not shown, are nearly identical.) The liquidity betas are estimated by running the

regression in (8) over the whole sample period, January 1966 through December 1999, as well

as over two subperiods. The post-ranking liquidity betas increase across deciles, consistent

with the objective of the sorting procedure. The �10-1� spread, which goes long decile 10

(stocks with high liquidity betas) and short decile 1 (stocks with low liquidity betas), has

an overall-period liquidity beta of 8.23, with a t-statistic of 2.37.

Panel B of Table 3 reports some additional properties of portfolios sorted by predicted

liquidity betas. The low-beta portfolios contain stocks of somewhat smaller Þrms: the aver-

age size in portfolio 1 is $257 million, as compared to $1.3 billion in portfolio ten (averaged

over time). Stocks in the low-beta portfolios also tend to be less liquid, as measured by

the average value of �γit. Panel B also reports the decile portfolios� betas with respect to

the Fama-French factors, MKT, SMB, and HML, and the previously described momentum

factor, MOM. The Fama-French and momentum betas are estimated by regressing the decile

excess returns on the returns of the four factor portfolios. All three Fama-French betas of

the 10-1 spread are signiÞcantly negative: -0.30 for MKT, -0.65 for SMB, and -0.40 for HML.

The SMB betas conÞrm the pattern in average capitalizations, and the HML betas indicate

that the 10-1 spread has a tilt toward growth stocks. The 10-1 spread�s momentum beta is

signiÞcantly positive (0.11), suggesting some tilt toward past winners.

3.1.3. Alphas

If our liquidity risk factor is priced, we should see systematic differences in the average returns

of our beta-sorted portfolios. The evidence in Table 4 indeed favors the pricing of liquidity

risk. The table reports the value-weighted portfolios� post-ranking alphas estimated under

three different factor speciÞcations. The CAPM alpha is computed with respect to MKT,

the Fama-French alpha with respect to the Fama-French factors, and the 4-factor alpha

with respect to the Fama-French factors and MOM. All three alphas of the 10-1 spread are

signiÞcantly positive: the CAPM alpha is 6.40% per year (t = 2.54), the Fama-French alpha

is 9.23% per year (t = 4.29), and the 4-factor alpha is 7.48% per year (t = 3.42). (Annual

alphas are computed as 12 times the monthly estimates.) The alphas are also robust across
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the subperiods. For example, the subperiod Fama-French alphas of the 10-1 spread are 8.50%

(t = 2.77) and 10.74% (t = 3.53), and the subperiod 4-factor alphas are 6.21% (t = 1.95)

and 9.49% (t = 3.12). Table 5 reports alphas when the decile portfolios are equally weighted

rather than value weighted. These results are even slightly stronger. For example, the full-

period CAPM, Fama-French, and 4-factor alphas of the equally weighted 10-1 spread are

8.23%, 10.49%, and 7.66%, respectively. The subperiod results are comparably strong, too.

We also test the hypothesis that all ten alphas are jointly equal to zero, using the test of

Gibbons, Ross, and Shanken (1989). For both equally weighted and value-weighted portfolios

and for all three models, the hypothesis is rejected at a 1% signiÞcance level in the overall

period. The hypothesis is also rejected at the 5% level in both subperiods, for both equally

weighted and value weighted portfolios and for all three models. The only exception occurs

with the four-factor alphas for the value-weighted portfolios in the second subperiod, in

which case the hypothesis is rejected at the 10% level.

Overall, the evidence strongly supports the hypothesis that our liquidity risk factor is

priced. The premium for this risk is positive, in that stocks with higher sensitivity to

aggregate liquidity shocks offer higher expected returns. The latter result is consistent with

the notion that a pervasive drop in liquidity is seen as undesirable by the representative

investor, so that investor requires compensation for holding stocks with greater exposure to

this risk.

3.1.4. Estimating the Premium Using All Ten Portfolios

The discussion above relies on the 10-1 spread to infer that the expected-return premium

associated with liquidity risk is positive. We can also estimate the liquidity risk premium

using all ten decile portfolios. DeÞne the multivariate regression,

rt = β0 +BFt + β
LLt + et, (13)

where rt is a 10× 1 vector containing the excess returns on the decile portfolios, and Ft is a
4×1 vector containing the realizations of the �traded� factors MKT, SMB, HML, and MOM,
B is a 10 × 4 matrix, and β0 and βL are 10 × 1 vectors. We also consider a speciÞcation
with only three traded factors, excluding MOM. Assume the decile portfolios are priced by

the returns� sensitivities to the traded factors and the non-traded liquidity factor:

E(rt) = BλF + β
LλL, (14)
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where E(·) denotes the unconditional expectation. Taking expectations of both sides of
equation (13) and substituting from equation (14) gives

β0 = β
L[λL − E(Lt)], (15)

since the vector of premia on the traded factors, λF, is equal to E(Ft). The liquidity factor

Lt is not the payoff on a traded position, so in general the liquidity risk premium λL is

not equal to E(Lt). We estimate λL using the Generalized Method of Moments (GMM) of
Hansen (1982). Let θ denote the set of unknown parameters: λL, βL, B, and E(Lt). The
GMM estimator of θ minimizes g(θ)0Wg(θ), where g(θ) = (1/T )

PT
t=1 ft(θ),

ft(θ) =

Ã
ht ⊗ et

Lt − E(Lt)
!
, (16)

h0t = ( 1 F 0t Lt ),
et = rt − βL[λL − E(Lt)]− BFt − βLLt, (17)

and W is a consistent estimator of the optimal weighting matrix.16

Estimates of the liquidity risk premium λL are reported in Table 6, along with asymptotic

t-statistics. Results are reported for both value-weighted and equally weighted portfolios.

The full-period estimate of λL is signiÞcantly positive for both sets of portfolios under both

speciÞcations (three traded factors or four). The subperiod estimates are all positive, and

the majority are statistically signiÞcant. Overall, estimating the liquidity risk premium

using all ten portfolios conÞrms the previous inferences based on the extreme deciles.17

Again, liquidity risk appears to be an economically important determinant of expected stock

returns.

The magnitude of the liquidity risk premium λL depends on the arbitrary scaling of Lt
described earlier, but that scaling does not affect the t-statistic or the product βLi λL, the

contribution of liquidity risk to asset i�s expected return. Table 6 also reports the GMM

estimates of (βL10 − βL1 )λL, the difference between expected returns on the extreme decile
portfolios implied by their liquidity betas. In the overall period, the annualized estimate

of (βL10 − βL1 )λL is 9.63% with three traded factors and 7.56% with four (the corresponding

values for equally weighted portfolios are 11.06% and 8.56%). These values are close to the

10-1 spread alphas in Table 4 of 9.23% and 7.48% (the corresponding values in Table 5 for

equally weighted portfolios are 10.49% and 7.66%). Thus, even when the liquidity premium

16Following Hansen (1982), we estimate W as the inverse of (1/T )
PT

t=1
�ft �f

0
t , where

�ft is equal to ft(θ)
evaluated at a consistent estimator of θ, obtained by minimizing g(θ)0g(θ).
17In no case does the asymptotic chi-square test reject the restriction in (14) at standard signiÞcance levels.
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is estimated using all ten portfolios, the contribution of liquidity risk to the 10-1 expected-

return difference remains virtually unchanged. The contributions of the traded factors to

the expected return of the 10-1 spread are much smaller, all below 2% per year in absolute

value for the overall period.

3.2. Sorting by Historical Liquidity Betas

As discussed earlier, a stock�s historical liquidity beta is the most important predictor of its

future liquidity beta (Table 2). If liquidity betas are sufficiently stable over time, sorting

on the historical liquidity betas alone could produce dispersion in the post-ranking betas.

This section shows that this is indeed the case, although the dispersion in the betas is not as

large as when liquidity betas are predicted using additional variables. Although our study

focuses primarily on the results produced by sorts on betas predicted with the larger set of

variables, we present here some results based on historical-beta sorts in order to show that

the results do not hinge on the inclusion of the additional variables.

At the end of each year between 1967 and 1998, we identify stocks with at least Þve years

of monthly returns continuing through the current year-end. For each stock, we estimate

its historical liquidity beta by running the regression in (8) using the most recent Þve years

of monthly data. We impose a Þve-year minimum here in estimating the historical beta, as

compared to the minimum of three years required to compute historical betas in the previous

analysis. With no other information about liquidity beta brought to bear, it seems reasonable

to require a somewhat more precise historical estimate. The series of innovations (Lt�s) is
again recomputed at the end of each year. Stocks are then sorted by these historical betas

into ten value-weighted portfolios. Analogous to our sort on the predicted betas, we obtain

a January 1968 through December 1999 series of monthly returns on each decile portfolio by

linking across years the post-ranking returns during the next 12 months. On average, there

are 217 stocks in each decile portfolio, and no portfolio ever contains fewer than 108 stocks.

Table 7 reports, in the same format as Table 3, the post-ranking liquidity betas as well as

the average market capitalization, liquidity, and Fama-French and momentum betas of the

decile portfolios. Note that, although the pattern in the post-ranking liquidity betas is not

monotonic, sorting on historical betas achieves some success in spreading the post-ranking

betas. The liquidity beta of the 10-1 spread is positive at 5.99 (t = 1.88), not as large as the

corresponding value of 8.23 (t = 2.37) obtained by sorting on the predicted betas. The SMB

beta of the 10-1 spread is signiÞcantly negative, as in Table 3, but the low-beta portfolio no
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longer has the lowest market capitalization. Rather, smaller Þrms now occupy both extremes

of the historical-beta sort. The latter result is consistent with smaller (and more volatile)

stocks producing noisier historical liquidity betas. Also, average liquidity is now lower at

both extremes, unlike the pattern in Table 3. Finally, the tilt toward growth stocks and past

winners observed in Table 3 disappears when sorting on historical liquidity betas.

Table 8 reports the value-weighted decile portfolios� post-ranking alphas. The dispersion

in the alphas is now smaller compared to the previous results, which is consistent with the

smaller dispersion in the post-ranking liquidity betas. Nevertheless, all three alphas of the

10-1 spread are still signiÞcantly positive in the overall period: the CAPM alpha is 4.66%

per year (t = 2.36), the Fama-French alpha is 4.15% per year (t = 2.08), and the 4-factor

alpha is 4.87% per year (t = 2.38).18 Moreover, the liquidity risk premium estimated from

the universe of all ten portfolios, obtained by the same GMM procedure used to produce

the values in Table 6, is positive and signiÞcant at the 10% level. With three traded factors

the estimated premium is 0.80 with a t-statistic of 1.77, and with four traded factors it is

1.04 with a t-statistic of 1.76. Note that the magnitude of the premium in either case is

fairly close to its counterpart in Table 6. In summary, the analysis based solely on historical

betas supports the conclusion that stocks with greater sensitivity to innovations in aggregate

liquidity offer higher expected returns.

3.3. Sorting By Size

Total market capitalization, or �size,� is a common criterion for sorting stocks in empirical

investment studies, and size sorts often produce dispersion in a number of other charac-

teristics. Table 9 reports various properties of decile portfolios formed by sorting on size

at the end of each year, where the breakpoints are based on all eligible NYSE, AMEX,

and NASDAQ stocks. Not surprisingly, smaller stocks are less liquid, in that the average

value of �γit increases monotonically across deciles. The liquidity betas of the two or three

portfolios containing the smallest stocks are large and signiÞcantly positive, while the betas

for the other deciles exhibit no discernible pattern and are not signiÞcantly different from

zero. When the size sort is instead based on breakpoints for NYSE stocks only, so that each

decile contains the same number of NYSE stocks but more AMEX and NASDAQ stocks are

assigned to the lower deciles, then the pattern in liquidity betas is fairly ßat across all ten

18When the decile portfolios are equally weighted, the post-ranking betas are less disperse than when the
portfolios are value-weighted, and the alphas lose signiÞcance but are still positive. This is consistent with
greater estimation error in historical liquidity betas for smaller stocks, which are typically more volatile.
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deciles. In other words, in a sort on size, the very smallest Þrms tend to be those with high

liquidity betas. It seems plausible that small and illiquid stocks might be those whose values

are most impacted by drops in market-wide liquidity, particularly if those drops prompt

some investors concerned with the overall liquidity of their portfolios to �ßee� such stocks

and move to assets with greater liquidity. At the same time, though, size is not the sole

determinant of liquidity betas. Recall from Table 3 that, when sorting by predicted liquidity

betas, the high-beta portfolios actually have somewhat higher average market capitalizations

than the low-beta portfolios.

Table 9 also reports the size-sorted portfolios� alphas computed with respect to the four

factors used previously (the excess market return and size, value, and momentum spreads).

Note that, for both the equally and value-weighted portfolios, the estimated alpha for the

decile of smallest Þrms is over 3% annually, with a t-statistic of 2.3. This 3% positive

abnormal return can be compared to the portion of expected return attributable to liquidity

risk, computed as the product of the portfolio�s liquidity beta and the estimate of the liquidity

risk premium λL reported earlier. If we take the premium estimated using the value-weighted

beta-sorted portfolios, reported in Panel A in Table 6 (and the lower of the overall-period

estimates), that product is 3.7% (= 4.73 × 0.78) for the equally weighted lowest size decile
and 4.1% (= 5.26 × 0.78) for the value-weighted version. In other words, the liquidity risk
of the small-Þrm portfolio appears to be more than sufficient to explain its abnormal return

with respect to the other four factors.

4. An Investment Perspective

The evidence presented in the previous section reveals that liquidity risk is related to

expected-return differences that are not explained by stocks� sensitivities to MKT, SMB,

HML, and MOM. An equivalent characterization of this evidence is that no combination

of the latter four factors (and riskless cash) is mean-variance efficient with respect to the

universe of common stocks.19 In particular, the large and signiÞcant alphas for the 10-1

spreads reported in Tables 4 and 5 imply that adding such positions to an opportunity set

consisting of the other four factors increases the maximum Sharpe ratio.

In a linear pricing model in which expected returns are explained by betas with respect to

19The equivalence between multi-beta asset pricing and mean-variance efficiency of some combination of
benchmark portfolios is well known. For an early recognition of this point see Merton (1973), and for later
discussions see Jobson and Korkie (1982, 1985), Grinblatt and Titman (1987), and Huberman, Kandel, and
Stambaugh (1987).
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non-traded factors, expected returns are also explained by betas with respect to portfolios

whose returns are maximally correlated with those factors.20 Constructing a maximum-

correlation portfolio for Lt from the universe of common stocks is a challenging problem

that lies beyond the scope of this study. It is the case that, if the ex post maximum

correlation portfolio is constructed from the six-asset universe consisting of the Þrst and last

decile portfolios of the liquidity-beta sort as well as the four factors MKT, SMB, HML, and

MOM, then the weight on the high-liquidity-beta portfolio is positive and the weight on the

low-liquidity-beta portfolio is negative (for both the value-weighted and equally weighted

versions of those portfolios). In this sense, adding the 10-1 spread to an investment universe

consisting of the original four factors is motivated by a model in which expected returns are

related to liquidity risk.

Let LIQV denote the payoff on the 10-1 spread constructed using value-weighted decile

portfolios sorted on predicted liquidity betas, and let LIQE denote the payoff on the equally

weighted version. To provide an additional perspective on the importance of liquidity risk,

we examine here the degree to which the mean-variance opportunity set is enhanced by

adding LIQV or LIQE to MKT, SMB, HML, and MOM. Of course, a mean-variance-

efficient portfolio is not necessarily the optimal choice of an investor in a world that gives

rise to multi-beta pricing, but we believe a mean-variance setting is of interest to many

investors nevertheless. Panel A of Table 10 reports, for the overall 1966�1999 period, the

maximum ex post Sharpe ratio and the weights in the corresponding tangency portfolio for

various subsets of the six factors. For ease of discussion, let S∗ denote the maximum Sharpe

ratio for a given set of assets. The original four factors have an S∗ of 0.33 (on a monthly

basis). When LIQV is added, S∗ increases to 0.37, and LIQV receives a greater weight in the

ex post tangency portfolio than MOM (15.6% versus 11.9%). When LIQE is added to the

original four, S∗ increases to 0.42, and the weight in MOM drops by more than two-thirds,

from 20.9% to 6.5%. In contrast, the weight on LIQE in that case is 25.6%, which is higher

than the weights on all but HML (29.6%). Moreover, we see that when adding a fourth

factor to the three Fama-French factors, which by themselves have an S∗ of 0.22, LIQE is

more valuable than MOM by the mean-variance comparison: LIQE raises S∗ to 0.40 while

MOM raises it to 0.33.

Since LIQV and LIQE Þgure prominently in the ex-post tangency portfolio, at the expense

of MOM especially, we are led to investigate a bit further the extent to which the momentum

factor�s importance is reduced by our liquidity-risk spreads. Panel B of Table 10 reports

20Huberman, Kandel, and Stambaugh (1987) characterize the �mimicking� portfolios that can be used in
place of non-traded factors when betas with respect to the latter explain expected returns.
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the alpha for MOM when regressed on the three Fama-French factors plus either LIQV or

LIQE. In the overall period, momentum�s annualized alpha with respect to just the three

Fama-French factors is 16.3% with a t-statistic of 4.85, conÞrming a well-known result.

Adding LIQV reduces momentum�s alpha somewhat, to 13.9% with a t-statistic of 4.09. The

momentum factor MOM is a spread between equally weighted portfolios, and perhaps for that

reason the effect on its alpha of adding LIQE to the Fama-French factors is more dramatic.

That equally weighted liquidity-risk spread cuts momentum�s overall-period alpha nearly in

half, to 8.4% with a t-statistic of 2.55. In the more recent 17-year subperiod from 1983

through 1999, momentum�s estimated alpha in the presence of LIQE is actually negative, at

-1.29.

Although such evidence is tantalizing, it is difficult to conclude that liquidity risk provides

a partial explanation for momentum. The liquidity beta of MOM, estimated as the coefficient

on Lt in a multiple regression that includes the three Fama-French factors, is positive but not
statistically signiÞcant at conventional levels in the overall period (6.9 with a t-statistic of

1.3). Moreover, in the later subperiod, when LIQE eliminates MOM�s alpha, the estimated

liquidity beta of MOM is negative (-1.65 with a t-statistic of -0.23). At the same time,

though, we must remember that the non-traded factor Lt is at best an imperfect proxy for
whatever correct measure of liquidity could be relevant for asset pricing. It remains possible

that the 10-1 spread constructed by ranking on betas with respect to Lt comes closer to the
correct mimicking portfolio than does Lt to the correct liquidity measure. At this point,
however, we can simply observe that momentum�s importance in an investment context is

impacted signiÞcantly by the addition of spreads based on liquidity risk.

5. Conclusions

Market-wide liquidity appears to be a state variable that is important for pricing common

stocks. We Þnd that expected stock returns are related cross-sectionally to the sensitivities

of stock returns to innovations in aggregate liquidity. Stocks that are more sensitive to

aggregate liquidity have substantially higher expected returns, even after accounting for

exposures to the market return as well as size, value, and momentum factors.

Our liquidity measure captures a dimension of liquidity associated with the strength

of volume-related return reversals. Over the last four decades, this measure of market-wide

liquidity exhibits a number of sharp declines, many of which coincide with market downturns

and apparent ßights to quality. Our liquidity measure is also characterized by signiÞcant
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commonality across stocks, supporting the notion of aggregate liquidity as a priced state

variable. Smaller stocks are less liquid, according to our measure, and the smallest stocks

have high sensitivities to aggregate liquidity.

One direction for future research is to explore whether liquidity risk plays a role in

various pricing anomalies in Þnancial markets. This study takes a step on this path by

showing that the momentum strategy of buying recent winning stocks and selling recent

losing stocks becomes less attractive from an investment perspective when portfolio spreads

based on liquidity risk are also available for investment. Future research could also investigate

whether expected returns are related to stocks� sensitivities to ßuctuations in other aspects

of aggregate liquidity, such as quoted and effective bid-ask spreads, market depth, trading

volume, and turnover. In addition, it would be useful to explore whether some form of

systematic liquidity risk is priced in other Þnancial markets, such as Þxed income markets

or international equity markets.
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Figure 1. Aggregate liquidity. Each month�s observation is constructed by averaging
individual-stock measures for the month and then multiplying by (mt/m1), where mt is the
total dollar value at the end of month t− 1 of the stocks included in the average in month t,
and month 1 corresponds to August 1962. An individual stock�s measure for a given month
is a regression slope coefficient estimated using daily returns and volume data within that
month. Tick marks correspond to July of the given year.
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Table 1

Correlations of Monthly Stock Market Returns with Other
Variables in Months with Large Liquidity Drops

The table reports the correlation between the monthly return on the CRSP value-weighted NYSE-AMEX
index, RS,t, and (i) minus the change in the rate on one-month Treasury bills, −∆Rf,t, (ii) the return on
long-term government bonds, RGB,t, (iii) the return on long-term corporate bonds, RCB,t, and (iv) the
equally weighted average percentage change in monthly dollar volume for NYSE-AMEX stocks, Volt. �Low-
liquidity� months are those in which the innovation in the liquidity series is at least two standard deviations
below zero. The p-values for the hypothesis that the correlations during these months are equal to those in
other months are computed by a bootstrap approach.

Correlation of RS,t with Number of
-∆Rf,t RGB,t RCB,t Volt observations

Jan 1962 � Dec 1999
All months 0.047 0.323 0.372 0.491 449
Low-liquidity months (by 2 std. dev.�s) -0.387 -0.197 -0.278 -0.360 14
Other months 0.092 0.362 0.406 0.522 435
P-value 0.087 0.045 0.018 0.002

Aug 1962 � Mar 1981
All months 0.077 0.285 0.376 0.567 224
Low-liquidity months (by 2 std. dev.�s) -0.194 0.247 -0.370 -0.362 7
Other months 0.079 0.285 0.378 0.572 217
P-value 0.279 0.426 0.070 0.016

April 1981 � Dec 1999
All months 0.007 0.353 0.365 0.394 225
Low-liquidity months (by 2 std. dev.�s) -0.573 -0.401 -0.307 -0.306 8
Other months 0.105 0.433 0.434 0.459 217
P-value 0.048 0.033 0.040 0.038
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Table 2

Determinants of Predicted Liquidity Betas

Each column reports the results of estimating a linear relation between a stock�s liquidity beta and the seven
characteristics listed (in addition to the intercept, shown Þrst). At each year-end shown, the estimation
uses all stocks deÞned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least
three years of monthly returns continuing through the given year-end. The estimation uses a two-stage
pooled time-series and cross-sectional approach. Each value reported is equal to the coefficient estimate
multiplied by the time-series average of the annual cross-sectional standard deviations of the characteristic.
The t-statistics are in parentheses.

Aug 1962 through
Dec 1998 Dec 1983 Dec 1968

Intercept -1.79 -4.39 -2.75
(-6.75) (-12.94) (-2.95)

Historical beta 2.30 3.75 9.18
(9.97) (10.87) (9.99)

Average liquidity -0.87 -0.02 -0.48
(-4.12) (-0.08) (-0.61)

Average volume 1.54 -3.37 0.07
(3.29) (-5.03) (0.05)

Cumulative return -0.04 1.00 0.93
(-0.14) (2.86) (0.86)

Return volatility -0.24 -1.13 -2.61
(-1.60) (-3.39) (-2.25)

Price 0.59 7.51 4.32
(1.85) (15.00) (3.38)

Shares outstanding -1.43 0.67 -0.69
(-3.37) (1.26) (-0.54)

25



Table 3

Properties of Portfolios Sorted on Predicted Liquidity Betas

At each year-end between 1965 and 1998, eligible stocks are sorted into 10 portfolios according to predicted liquidity betas. The betas are
constructed as linear functions of seven stock characteristics at the current year-end, using coefficients estimated from a pooled time-series
cross-sectional regression approach. The estimation and sorting procedure at each year-end uses only data available at that time. Eligible
stocks are deÞned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least three years of monthly returns
continuing through the current year-end and with stock prices between $5 and $1,000. The portfolio returns for the 12 post-ranking months
are linked across years to form one series of post-ranking returns for each decile. Panel A reports the decile portfolios� post-ranking liquidity
betas, estimated by regressing the value-weighted portfolio excess returns on the aggregate liquidity innovation and the Fama-French factors.
Panel B reports the time-series averages of the deciles portfolios� market capitalization and liquidity, obtained by averaging the corresponding
measures across the stocks within each decile. Market capitalization is reported in millions of dollars. A stock�s liquidity in any given month
is the slope coefficient γi,t from equation (1), multiplied by 100. Also reported are post-ranking betas with respect to the three Fama-French
factors and a momentum factor, estimated by regressing value-weighted portfolio excess returns on the four factors. The t-statistics are in
parentheses.

1 2 3 4 5 6 7 8 9 10 10�1

Panel A. Post-ranking liquidity betas

Jan 1966�Dec 1999 -5.75 -6.54 -4.66 -3.16 0.90 -0.63 -0.86 0.68 2.44 2.48 8.23
(-2.22) (-2.98) (-2.59) (-2.18) (0.69) (-0.54) (-0.68) (0.52) (1.77) (1.35) (2.37)

Jan 1966�Dec 1982 -7.28 -8.29 -3.47 -3.15 2.58 -0.34 -0.47 0.73 -2.51 4.19 11.47
(-1.84) (-2.54) (-1.19) (-1.36) (1.23) (-0.17) (-0.22) (0.33) (-1.10) (1.38) (2.06)

Jan 1983�Dec 1999 -3.00 -4.27 -5.09 -2.36 -1.10 -0.84 -1.60 1.94 5.67 0.85 3.85
(-0.85) (-1.37) (-2.12) (-1.22) (-0.63) (-0.57) (-1.06) (1.22) (3.23) (0.36) (0.84)

Panel B. Additional properties, Jan 1966 � Dec 1999

Market cap 257.27 494.52 728.36 937.26 1173.87 1450.99 1418.38 1518.23 1473.44 1296.18

Liquidity -1.44 -0.99 -0.82 -0.83 -0.51 -0.51 -0.48 -0.34 -0.38 -0.46

MKT beta 1.24 1.21 1.09 1.05 1.04 1.03 1.00 1.01 0.98 0.94 -0.30
(37.70) (44.61) (48.31) (56.83) (62.83) (68.89) (62.56) (60.75) (55.76) (40.75) (-6.85)

SMB beta 0.70 0.31 0.05 0.01 -0.09 -0.12 -0.12 -0.09 -0.12 0.05 -0.65
(14.47) (7.64) (1.61) (0.26) (-3.51) (-5.63) (-5.04) (-3.82) (-4.76) (1.36) (-10.14)

HML beta 0.07 0.19 0.23 0.20 0.11 0.14 0.08 -0.00 -0.01 -0.34 -0.40
(1.31) (4.36) (6.45) (6.69) (4.02) (5.68) (3.07) (-0.06) (-0.37) (-9.04) (-5.74)

MOM beta -0.06 -0.10 -0.07 -0.03 -0.03 -0.01 0.01 -0.01 0.03 0.05 0.11
(-2.43) (-5.35) (-4.29) (-2.19) (-2.51) (-0.72) (0.53) (-0.72) (2.72) (3.02) (3.41)
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Table 4

Alphas of Value-Weighted Portfolios Sorted on Predicted Liquidity Betas

At each year-end between 1965 and 1998, eligible stocks are sorted into 10 portfolios according to predicted liquidity betas. The betas
are constructed as linear functions of seven stock characteristics at the current year-end, using coefficients estimated from a pooled time-
series cross-sectional regression approach. The estimation and sorting procedure at each year-end uses only data available at that time.
Eligible stocks are deÞned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least three years of monthly
returns continuing through the current year-end and with stock prices between $5 and $1,000. The portfolio returns for the 12 post-
ranking months are linked across years to form one series of post-ranking returns for each decile. The table reports the decile portfolios�
post-ranking alphas, in percent per year. The alphas are estimated as intercepts from the regressions of excess portfolio post-ranking
returns on excess market returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and
momentum factor returns (4-factor alphas). The t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10�1

Jan 1966 � Dec 1999

CAPM alpha -5.16 -1.88 -0.66 -0.07 -1.48 1.48 1.22 1.38 1.68 1.24 6.40
(-2.57) (-1.24) (-0.56) (-0.08) (-1.80) (1.93) (1.52) (1.72) (1.93) (1.01) (2.54)

Fama-French alpha -6.05 -3.36 -2.15 -1.23 -2.10 0.78 0.86 1.41 1.90 3.18 9.23
(-3.77) (-2.47) (-1.93) (-1.37) (-2.61) (1.08) (1.11) (1.76) (2.22) (2.82) (4.29)

4-factor alpha -5.11 -1.66 -1.02 -0.76 -1.61 0.91 0.76 1.55 1.34 2.36 7.48
(-3.12) (-1.23) (-0.91) (-0.83) (-1.96) (1.22) (0.96) (1.88) (1.54) (2.06) (3.42)

Jan 1966 � Dec 1982

CAPM alpha -2.26 1.63 0.54 0.67 -3.09 1.44 0.61 1.78 1.43 -0.93 1.34
(-0.81) (0.76) (0.31) (0.50) (-2.69) (1.29) (0.54) (1.46) (1.14) (-0.52) (0.36)

Fama-French alpha -7.32 -2.22 -1.80 -0.75 -3.29 1.03 0.20 1.91 2.32 1.18 8.50
(-3.36) (-1.23) (-1.13) (-0.59) (-2.85) (0.95) (0.17) (1.56) (1.86) (0.71) (2.77)

4-factor alpha -6.43 -0.25 -0.22 -0.03 -2.46 1.09 0.31 2.89 1.67 -0.22 6.21
(-2.82) (-0.13) (-0.13) (-0.02) (-2.05) (0.95) (0.25) (2.28) (1.28) (-0.13) (1.95)

Jan 1983 � Dec 1999

CAPM alpha -8.01 -5.33 -1.76 -1.01 0.20 1.55 1.74 0.70 1.81 3.38 11.39
(-2.76) (-2.49) (-1.08) (-0.77) (0.17) (1.46) (1.54) (0.67) (1.47) (1.98) (3.36)

Fama-French alpha -5.23 -5.08 -2.69 -1.80 -0.82 0.37 0.89 0.76 1.25 5.51 10.74
(-2.23) (-2.46) (-1.67) (-1.41) (-0.72) (0.38) (0.89) (0.72) (1.05) (3.51) (3.53)

4-factor alpha -4.43 -3.72 -1.94 -1.52 -0.63 0.53 0.70 0.47 0.84 5.06 9.49
(-1.88) (-1.85) (-1.21) (-1.17) (-0.54) (0.54) (0.69) (0.44) (0.70) (3.20) (3.12)
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Table 5

Alphas of Equally-Weighted Portfolios Sorted on Predicted Liquidity Betas

At each year-end between 1965 and 1998, eligible stocks are sorted into 10 portfolios according to predicted liquidity betas. The betas
are constructed as linear functions of seven stock characteristics at the current year-end, using coefficients estimated from a pooled time-
series cross-sectional regression approach. The estimation and sorting procedure at each year-end uses only data available at that time.
Eligible stocks are deÞned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least three years of monthly
returns continuing through the current year-end and with stock prices between $5 and $1,000. The portfolio returns for the 12 post-
ranking months are linked across years to form one series of post-ranking returns for each decile. The table reports the decile portfolios�
post-ranking alphas, in percent per year. The alphas are estimated as intercepts from the regressions of excess portfolio post-ranking
returns on excess market returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and
momentum factor returns (4-factor alphas). The t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10�1

Jan 1966 � Dec 1999

CAPM alpha -5.46 -1.47 -0.73 0.34 0.02 0.94 1.97 2.78 2.43 2.77 8.23
(-2.27) (-0.75) (-0.46) (0.24) (0.02) (0.84) (1.91) (2.71) (2.37) (2.06) (4.12)

Fama-French alpha -7.53 -3.47 -3.04 -1.58 -1.67 -0.76 0.46 1.49 1.46 2.96 10.49
(-6.35) (-3.39) (-3.63) (-2.13) (-2.47) (-1.21) (0.78) (2.50) (2.18) (3.14) (6.50)

4-factor alpha -5.80 -1.64 -1.68 -0.68 -1.02 -0.17 0.16 1.32 0.95 1.86 7.66
(-4.98) (-1.68) (-2.07) (-0.92) (-1.50) (-0.26) (0.26) (2.16) (1.40) (1.98) (4.95)

Jan 1966 � Dec 1982

CAPM alpha 1.74 5.52 5.22 4.49 2.99 4.15 4.76 6.00 4.11 4.68 2.95
(0.49) (1.90) (2.22) (2.25) (1.70) (2.49) (3.15) (4.10) (2.77) (2.54) (0.98)

Fama-French alpha -6.50 -1.12 -0.80 -0.51 -1.21 0.02 1.12 2.70 1.23 2.76 9.25
(-4.02) (-0.76) (-0.69) (-0.52) (-1.25) (0.02) (1.32) (3.17) (1.22) (1.95) (4.19)

4-factor alpha -5.32 1.00 1.28 0.80 0.20 0.93 0.85 2.79 0.84 1.18 6.49
(-3.16) (0.67) (1.14) (0.81) (0.20) (1.00) (0.96) (3.12) (0.79) (0.81) (2.91)

Jan 1983 � Dec 1999

CAPM alpha -11.47 -7.36 -6.09 -3.06 -2.21 -1.58 0.06 0.29 1.77 1.78 13.25
(-3.70) (-2.94) (-2.92) (-1.63) (-1.41) (-1.10) (0.04) (0.21) (1.34) (0.92) (5.13)

Fama-French alpha -8.90 -5.83 -5.58 -2.58 -2.08 -1.56 0.13 0.54 2.37 4.12 13.02
(-5.02) (-4.07) (-4.62) (-2.26) (-2.16) (-1.70) (0.15) (0.64) (2.72) (3.33) (5.50)

4-factor alpha -7.10 -4.34 -4.73 -2.00 -1.92 -1.19 -0.13 0.29 1.87 3.42 10.51
(-4.40) (-3.35) (-4.05) (-1.77) (-1.97) (-1.30) (-0.15) (0.34) (2.18) (2.80) (4.94)
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Table 6

Liquidity Risk Premium and its Contribution to Expected Return

The table reports the estimates of the risk premium associated with the liquidity factor, as well as the
contribution of liquidity risk to the expected return on the �10-1� spread. Stocks are sorted into 10 portfolios
by their predicted liquidity betas at each year-end. The premium λL is estimated using post-ranking returns
on all 10 portfolios. The decile portfolios are value-weighted in Panel A and equally weighted in Panel B.
The premium is reported as a monthly value multiplied by 1200, so that the product of the liquidity beta
and the reported premium can be interpreted as annual percentage return. The 10-1 spread goes long decile
10, with high liquidity beta βL10, and short decile 1, with low liquidity beta βL1 . The contribution of liquidity
risk to the portfolio�s expected return, (βL10 − βL1 )λL, is also expressed in percent per year. The asymptotic
t-statistics are in parentheses.

Jan 1966 � Dec 1999 Jan 1966 � Dec 1982 Jan 1983 � Dec 1999

Panel A. Value-weighted portfolios sorted on predicted betas
Three traded factors

λL 0.91 0.81 1.13
(2.92) (2.05) (2.73)

(βL10 − βL1 )λL 9.63 8.37 10.59
(4.57) (2.91) (3.22)

Four traded factors

λL 0.78 0.23 0.82
(2.43) (1.36) (2.93)

(βL10 − βL1 )λL 7.56 2.61 9.27
(3.42) (1.32) (2.78)

Panel B. Equally weighted portfolios sorted on predicted betas
Three traded factors

λL 1.65 1.28 1.10
(2.74) (1.82) (3.38)

(βL10 − βL1 )λL 11.06 9.90 10.77
(7.19) (4.26) (4.05)

Four traded factors

λL 1.72 3.01 1.02
(2.33) (0.74) (3.49)

(βL10 − βL1 )λL 8.56 8.20 10.14
(5.53) (3.03) (4.07)
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Table 7

Properties of Portfolios Sorted on Historical Liquidity Betas

At each year-end between 1967 and 1998, eligible stocks are sorted into 10 portfolios according to historical liquidity betas. The betas are
estimated as the slope coefficients on the aggregate liquidity innovation in regressions of excess stock returns on that innovation and the
three Fama-French factors. The regressions are estimated using the most recent Þve years of data, and eligible stocks are deÞned as ordinary
common shares traded on the NYSE, AMEX, or NASDAQ with Þve years of monthly returns continuing through the current year-end and
with stock prices between $5 and $1,000. The portfolio returns for the 12 post-ranking months are linked across years to form one series of
post-ranking returns for each decile. Panel A reports the decile portfolios� post-ranking liquidity betas, estimated by regressing value-weighted
portfolio excess returns on the liquidity innovation and the Fama-French factors. Panel B reports the time-series average of each decile�s market
capitalization and liquidity, obtained by averaging the corresponding measures across the stocks within each decile. Market capitalization is
reported in millions of dollars. A stock�s liquidity in any given month is the slope coefficient γi,t from equation (1), multiplied by 100. Also
reported are post-ranking betas with respect to the Fama-French and momentum factors, estimated by regressing value-weighted portfolio
excess returns on the four factors. The t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10�1

Panel A. Liquidity betas

Jan 1968 � Dec 1999 -6.02 -0.65 -0.62 -0.54 1.12 -1.58 1.37 2.00 3.04 -0.04 5.99
(-2.57) (-0.37) (-0.48) (-0.41) (0.96) (-1.24) (1.00) (1.49) (1.99) (-0.02) (1.88)

Jan 1968 � Dec 1983 -7.59 -1.17 3.87 -1.54 -0.48 1.65 -1.18 0.02 1.26 0.41 7.99
(-1.84) (-0.44) (1.86) (-0.68) (-0.25) (0.71) (-0.55) (0.01) (0.54) (0.14) (1.60)

Jan 1984 � Dec 1999 -4.17 -1.49 -4.10 -0.30 2.55 -2.75 2.80 3.79 4.38 1.18 5.35
(-1.52) (-0.63) (-2.46) (-0.18) (1.72) (-2.00) (1.56) (2.08) (2.07) (0.39) (1.26)

Panel B. Additional properties, Jan 1968 � Dec 1999

Market cap 454.52 809.86 1107.67 1400.11 1526.57 1491.65 1283.18 1004.97 732.79 392.40

Liquidity -1.37 -0.90 -0.41 -0.81 -0.61 -0.66 -0.63 -0.54 -0.66 -1.07

MKT beta 1.12 1.09 1.02 0.96 0.98 0.99 1.02 1.01 1.02 1.09 -0.03
(37.25) (48.37) (61.23) (56.63) (65.92) (59.99) (58.01) (58.52) (51.53) (40.84) (-0.74)

SMB beta 0.37 -0.00 -0.13 -0.16 -0.09 -0.15 -0.11 -0.00 0.04 0.16 -0.20
(8.02) (-0.02) (-5.11) (-6.03) (-4.21) (-6.10) (-4.19) (-0.02) (1.20) (4.06) (-3.25)

HML beta -0.20 -0.05 0.02 -0.02 0.10 0.12 0.07 0.09 -0.01 -0.15 0.05
(-4.04) (-1.31) (0.87) (-0.80) (4.22) (4.40) (2.60) (3.27) (-0.38) (-3.39) (0.76)

MOM beta 0.04 -0.00 0.02 0.01 -0.02 -0.00 -0.01 0.01 -0.02 -0.01 -0.05
(1.64) (-0.18) (1.25) (1.13) (-1.91) (-0.17) (-0.76) (0.65) (-1.11) (-0.46) (-1.51)
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Table 8

Alphas of Value-Weighted Portfolios Sorted on Historical Liquidity Betas

At each year-end between 1967 and 1998, eligible stocks are sorted into 10 portfolios according to historical liquidity betas. The betas
are estimated as the slope coefficients on the aggregate liquidity innovation in regressions of excess stock returns on that innovation and
the three Fama-French factors. The regressions are estimated using the most recent Þve years of data, and eligible stocks are deÞned as
ordinary common shares traded on the NYSE, AMEX, or NASDAQ with Þve years of monthly returns continuing through the current
year-end and with stock prices between $5 and $1,000. The portfolio returns for the 12 post-ranking months are linked across years to
form one series of post-ranking returns for each decile. The table reports the decile portfolios� post-ranking alphas, in percent per year.
The alphas are estimated as intercepts from the regressions of excess portfolio post-ranking returns on excess market returns (CAPM
alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and momentum factor returns (4-factor alphas).
The t-statistics are in parentheses.

1 2 3 4 5 6 7 8 9 10 10�1

Jan 1968 � Dec 1999

CAPM alpha -2.06 -0.36 0.63 0.49 0.07 0.49 1.42 1.36 -0.02 2.60 4.66
(-1.30) (-0.34) (0.76) (0.57) (0.10) (0.58) (1.64) (1.63) (-0.02) (1.96) (2.36)

Fama-French alpha -0.62 -0.09 0.46 0.57 -0.62 -0.28 0.90 0.84 0.03 3.53 4.15
(-0.42) (-0.08) (0.57) (0.68) (-0.86) (-0.35) (1.06) (1.00) (0.03) (2.71) (2.08)

4-factor alpha -1.20 -0.04 0.22 0.34 -0.29 -0.25 1.05 0.71 0.29 3.67 4.87
(-0.79) (-0.04) (0.26) (0.40) (-0.40) (-0.31) (1.20) (0.82) (0.29) (2.74) (2.38)

Jan 1968 � Dec 1983

CAPM alpha -1.10 1.04 0.94 0.35 -0.28 0.46 0.09 0.83 0.33 2.51 3.62
(-0.46) (0.70) (0.79) (0.27) (-0.26) (0.34) (0.08) (0.72) (0.25) (1.51) (1.32)

Fama-French alpha -1.24 2.32 1.66 1.53 -1.05 -0.49 -0.06 -0.07 0.17 1.61 2.85
(-0.53) (1.56) (1.41) (1.21) (-0.98) (-0.38) (-0.05) (-0.06) (0.13) (1.01) (1.01)

4-factor alpha -3.74 1.50 0.87 0.86 -0.20 0.21 0.59 -0.18 0.59 1.64 5.38
(-1.58) (0.96) (0.71) (0.66) (-0.18) (0.16) (0.47) (-0.15) (0.43) (0.98) (1.86)

Jan 1984 � Dec 1999

CAPM alpha -2.79 -1.63 0.21 0.40 0.37 0.23 3.12 1.70 -0.11 2.70 5.49
(-1.31) (-1.04) (0.18) (0.36) (0.36) (0.23) (2.51) (1.40) (-0.08) (1.28) (1.90)

Fama-French alpha 0.03 -2.04 -0.60 -0.33 -0.40 -0.55 2.21 1.50 -0.11 4.41 4.38
(0.02) (-1.29) (-0.53) (-0.30) (-0.40) (-0.59) (1.83) (1.22) (-0.07) (2.20) (1.54)

4-factor alpha 0.57 -1.50 -0.50 -0.28 -0.39 -0.87 2.06 1.35 0.02 4.55 3.98
(0.30) (-0.94) (-0.44) (-0.25) (-0.38) (-0.93) (1.68) (1.08) (0.01) (2.23) (1.38)
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Table 9

Portfolios Sorted on Market Capitalization

At each year-end between 1962 and 1998, eligible stocks are sorted into 10 portfolios according to market capitalization. Eligible stocks
are deÞned as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with stock prices between $5 and $1,000. The
breakpoints for the sort are based on all eligible stocks, so that all decile portfolios contain approximately the same number of stocks in
each month. The portfolio returns for the 12 post-ranking months are linked across years to form one series of post-ranking returns for
each decile. Panel A reports the time-series averages of the deciles portfolios� market capitalization and liquidity, obtained by averaging
the corresponding measures across the stocks within each decile. Panels B and C report the decile portfolios� post-ranking liquidity
betas, estimated by regressing excess portfolio returns on the aggregate liquidity innovation and the Fama-French factors. Also reported
are the portfolios� alphas, estimated as intercepts from the regressions of excess portfolio post-ranking returns on the Fama-French and
momentum factor returns. The t-statistics are in parentheses. All statistics are calculated over the period January 1963 through December
1999.

1 2 3 4 5 6 7 8 9 10 1-10

Panel A. General properties

Market cap 10.19 20.68 33.12 49.76 74.79 114.29 184.55 329.79 731.18 4696.50

Liquidity -4.08 -3.59 -1.71 -1.42 -1.11 -0.71 -0.44 -0.21 -0.10 -0.02

Panel B. Return-based measures for equal-weighted portfolios

Liquidity beta 4.73 4.22 2.61 0.43 0.82 0.06 -0.25 -1.29 -0.63 0.59 4.14
(2.18) (2.64) (1.89) (0.40) (0.79) (0.07) (-0.28) (-1.23) (-0.63) (0.80) (1.75)

4-factor alpha 3.15 0.47 -0.45 -1.48 -1.42 -1.83 -0.70 -1.40 -1.04 -0.68 3.83
(2.34) (0.48) (-0.55) (-2.34) (-2.27) (-3.10) (-1.24) (-2.12) (-1.65) (-1.48) (2.59)

Panel C. Return-based measures for value-weighted portfolios

Liquidity beta 5.26 3.84 1.95 -0.42 0.34 -1.13 -0.48 -1.02 -1.60 0.17 5.09
(2.57) (2.46) (1.52) (-0.43) (0.37) (-1.25) (-0.54) (-1.04) (-1.66) (0.67) (2.51)

4-factor alpha 3.01 1.09 0.57 -0.67 -0.75 -0.91 -0.33 -1.05 -0.81 0.50 2.51
(2.34) (1.12) (0.71) (-1.07) (-1.30) (-1.64) (-0.61) (-1.73) (-1.34) (3.14) (1.96)
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Table 10

Liquidity-Risk Spreads and Investment Opportunities

Each row of Panel A reports the ex-post tangency portfolio weights (in percent) as well as the ex-post monthly
Sharpe ratio of the tangency portfolio in the given asset universe. The assets available for investment are
various subsets of six traded factors. This set comprises the Fama-French factors MKT, SMB, and HML,
a momentum factor MOM, and two liquidity-risk spreads, both of which go long decile 10, containing the
stocks with the highest predicted liquidity betas, and short decile 1, containing the stocks with the lowest
betas. Each leg of the spread is value-weighted in LIQV and equally-weighted in LIQE . Panel B reports the
alphas (in percent per year) of the momentum portfolio with respect to the factors listed in the row label.
The t-statistics are in parentheses.

Panel A. Weights in the ex-post tangency portfolio, Jan 1966 � Dec 1999

MKT SMB HML MOM LIQV LIQE Sharpe ratio

100.00 � � � � � 0.12
35.08 5.83 59.10 � � � 0.22
20.05 16.07 43.03 20.85 � � 0.33
22.34 18.77 36.41 � 22.49 � 0.31
17.32 22.33 29.10 � � 31.25 0.40
17.70 20.62 34.23 11.86 15.59 � 0.37
15.88 22.51 29.56 6.47 � 25.58 0.42

Panel B. Alphas from the regression of momentum on portfolios listed

Jan 1966 � Dec 1999 Jan 1966 � Dec 1982 Jan 1983 � Dec 1999

MKT,SMB,HML 16.30 21.65 11.10
(4.85) (4.53) (2.29)

MKT,SMB,HML,LIQV 13.89 19.46 8.03
(4.09) (4.04) (1.63)

MKT,SMB,HML,LIQE 8.41 16.11 -1.29
(2.55) (3.35) (-0.28)
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